正四棱锥的概
念:每个面都 是有相同边数 的正多边形, 且经过每个顶 点都有相同数 目的棱的凸多 面体,叫做正 多面体.也叫 正四棱锥小编还为您整理了以下内容,可能对您也有帮助:
正四棱锥定义是什么?
正四棱锥定义:底面是正方形,侧面为4个全等的等腰三角形且有公共顶点,顶点在底面的投影是底面的中心。
底面是正方形,顶点在底面的射影是正方形的中心。三角形的底边就是正方形的边。体积公式:h*s*1/3(h=高,s=底面面积)。
棱锥:在几何学上,棱锥又称角锥,是三维多面体的一种,由多边形各个顶点向它所在的平面外一点依次连直线段而构成。
多边形称为棱锥的底面。随着底面形状不同,棱锥的称呼也不相同,依底面多边形而定,例如底面是正方形的棱锥称为方锥,底面为三角形的棱锥称为三棱锥,底面为五边形的棱锥称为五棱锥等等。
正四棱锥性质:
(1)正四棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。
(2)正四棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形。
(3)正四棱锥的侧棱与底面所成的角都相等;正棱锥的侧面与底面所成的二面角都相等。
Copyright © 2019- fupindai.com 版权所有 赣ICP备2024042792号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务