搜索
您的当前位置:首页正文

巧用圆锥曲线的定义解题

来源:赴品旅游
教材探析 62 S 巧用圆锥曲线的定义解题 ■程淑玲 求轨迹方程 例1坐标满足方程 ̄/( 一1)0+Y =I —Y+ 3I的点P( ,',)的轨迹为( )。 一、8,这说明点 既在双曲线 一 16=1上。 (A)抛物线 (B)双曲线 又在直线,,=343 ̄,于是原方程可化为 学一 (C)椭圆 (D)两条直线 分析:若按常规思路,应先化简方程,过程较长, =1,由此得 =l0或 =一6(增根,舍去)。 但如 果把方程变形、厂 = _2: 三、用于解决与圆锥曲线焦点有关的f.-I题 ,运用圆锥曲线的第二定义即可解决。 Oil 3设P为椭圆 + 64=1上一点,F。、 解:原方程可化为 ̄/( 一1) +Y =√2・ 是焦点。若 Fl =詈,求△F1P 的面积。 三≠ ,即知它的几何意义是动点P( ,y)到定 解:设I PFl=m,I P I=n,则 √2 点F(1,0)的距离与它到直线Z: —Y+3=0的距离 1 .7c 之比等于√2,即圆锥曲线的离心率为√2>1。由双曲 1 了 。 线的定义知,点P的轨迹是双曲线,故选B。 由椭圆的定义知,IPFlI+IP l=2a,即 二、用于解方程 m+n=20。 ① 例2解方程 ̄/ +6 +36一 ̄/ 2+7 +76= 又由余弦定理得 8。 I PFl  I+I PF2 I 一2 I PF1 1.1 PF2I c0s{= 分析:这是一个无理方程,如按常规方法即平方 法,将得到一个一元四次整式方程,显然比较繁。这 FlF1l 2, 时若挖掘其几何意义,运用圆锥曲线的第一定义即 即m +n 一,M=127。 ② 可简捷获解。 ①z一②,得m: , 解:原方程可化为√( +3) +(343—0) 一 ・..、/( +7) +(345—0) =8,贝0令F.(一3,0),F2(7, s =警 。 O), ( ,345),则原方程可化为I l I—l l= 蛉建鼗 一李雪芬 写作训练,简而言之,就是教会学生写作文,教 通过观察与体验,有了材料,接下来就应该对材 会学生用语言文字进行表达与交流,教学生去创造 料进行大胆的取舍、剪裁,并深入挖掘事物中蕴含的 性地表述对自我及世界的认识。中国古人有“言为 深意。 心声”之写作古训,白居易亦有“文章合为时而著,歌 纵观近几年各地中考作文,话题作文居多,虽然 诗合为事而作”的言论,毛主席更是说过:“文章是一 体裁题材不限,写作范围很宽,但大多数学生的写作 定的社会生活在人头脑中反映的产物。”这也就是说 仍以记叙为主,综合运用了描写、议论、抒情等表达 文章的实质就是反映写作者自己对事物的理解与看 方式。要写好这类文章,就必须对现有材料进行挖 法的,是表达自己对人与事物的态度与感情的,是为 掘,因为有些事物的含义,常常不是一眼就能看清楚 现实生活服务的。学生写作文也得遵循以上原则。 的,需要开动脑筋,往深处挖掘。即使一张全优的成 因此,对已有一定文字基础和初步写作能力的初中 绩单,也不能只看到它表面的分数,而应该“节外生 生进行科学严格的训练,使他们能写出观点鲜明、情 枝”地想一想,全优的成绩单后面是否有坚强的意 感饱满、真实生动地反映客观现实本来面目的文章, 志、不馁的精神,是否有废寝忘食、孜孜不倦的勤学 是初中阶段写作训练的目标。 苦练,是否有几个感人肺腑的故事。 为了达到这一目标,首先要训练的就是学生选 世间万物都是普遍联系的,很多事物的意义正 材、况:剪裁的能力。在写作训练中,老师提出了写作的目的要求,并作出了提示,往往会有这样的情 但 是从联系中显示出来的。对材料的取舍、时候离不开大胆的普遍联系。欧阳修《卖油翁》一文 剪裁很多 仍见学生抓耳挠腮,紧咬笔杆,或猛翻作文书,无计 中,把陈尧咨的“十中八九”与卖油翁“自钱孑L人而钱 可施。能稍作思考,提笔就写,甚至奋笔疾书者微乎 不湿”联系起来,说明熟能生巧的道理。又如一学生 其微。这一现象说明什么?主要还是因为学生头脑 在习作中把一名学习成绩颇佳却因身体素质极差而 中缺少材料,感到无事可写、无情可抒。事实也确实 被理想学校拒之门外的事情联系起来,议论了智、体 如此。当今的中学生,大多循环于家庭学校两点一 共同发展的重要性,联系就很不错。有时一些看起 线之间,活动范围不大,但实际上我们的学生只要稍 来并不相干的事情,仔细想来,其实都有着内在的联 加留意,他们看到、听到、想到的东西其实并不少,特 系,巧妙地组合在一起,就会构思出内容丰富、言之 别是从影视、报刊中获得的信息,更是是五彩缤纷、 有物的文章来。 绚丽多姿的。 (作者单位:河南省荥阳市第三高级中学附属中学) 

因篇幅问题不能全部显示,请点此查看更多更全内容

Top