REVIEWARTICLE
Informationprocessingwithnonlinearopticaltwo-dimensionalfeedbacksystems
MikhailAVorontsov†
ArmyResearchLaboratory,InformationScienceandTechnologyDirectorate,2800PowderMillRoad,Adelphi,MD20783,USA
Received29June1998,infinalform22October1998
Abstract.Herewediscussnewpotentialapplicationsinparallelimageprocessingand
adaptiveopticsfornonlinearspatio-temporalprocessesoccurringinoptical(opto-electronic)nonlineartwo-dimensionalfeedbacksystems.
Keywords:Parallelimageprocessing,adaptiveoptics,nonlineardynamics,nonlinearoptics
1.Introduction
Nonlinearopticalsystemswithatwo-dimensional(2D)feedbackloophaveappearedasanexcellenttoolforstudyingavarietyofcomplexnonlinearspatio-temporalphenomenaincludingpatterns,opticalsolitonsandlocalizedstates,driftingandrotatorywaves,andchaoticregimes[1–6].TheongoingmergerofclassicalFourieropticswithnonlinearopticsoccurringinnonlinearoptical2D-feedbacksystemsbringsadditional,effectivemethodsfornonlineardynamicsdesignandcontrol[7,8].
Despitethesenewprospectsthereareseveralproblemsrelatedtothepotentialapplicationofthesesystems,aswellasthemoregeneraldisciplineofnonlinearopticalspatio-temporaldynamics,totheareaofinformationprocessing.First,wearestillratherrestrictedinthechoiceofnatural(microscopic)opticalnonlinearitiesandcannotprovideanexactnonlinearitytypeasrequiredforaparticularapplication.Anotherissueimportantforinformationprocessingistheabilitytocontrolopticalnonlinearitytimeresponseandstrength.
Theseproblemscanbepartiallyovercomeusingartificiallydesignednonlinearitiesbasedonavarietyofopto-electronicdevices[9].Thefirstimplementationofthisapproachforthestudyofspatio-temporalphenomenawasmadeinthemid-1980swhenanopto-electronicdevice—theliquidcrystallightvalve(LCLV)—wasusedintheoptical2D-feedbacksystem[10].AtthepresenttimetheLCLV-based2D-feedbacksystemisoneofthemostextensivelyusednonlinearopticalmodelsintheanalysisofavarietyofnonlinearspatio-temporalphenomena[11–14].HereweconsiderbasicmodelsfornonlineardynamicsthatcanberealizedusingLCLV-based2D-feedbacksystems,
†E-mailaddress:vorontsov@iol.arl.mil
anddiscussproblemsrelatedtoinformationprocessingapplicationsusingthesesystems.
2.DynamicalmodelsofLCLV-based2D-feedbacksystems
2.1.Nonlinear-diffusionmodels
TheLCLV-based2D-feedbacksystemprovidesforopticalimplementationofthenonlinearreaction–diffusion-typeequation—apartialdifferentialequation(PDE)widelyusedinnonlineardynamics,synergetics,andinformationprocessing[15,16].ForthecaseofaLCLV-based2D-feedbacksystemthisequationreads[10,17]:
τ
∂u2
u(r,t)=D∇⊥u(r,t)+f[IFB(r,t)],∂t
IFB(r,t)=G[u(r,t),P(r),a],
(1)(2)
whereu(r,t)isphase-modulationintroducedbytheLCLV,2
istheLaplacianoperatorwithrespecttothespatial∇⊥
variables(r={x,y}),τistheLCLV’scharacteristictimeresponse,Disthediffusioncoefficient,andfisafunctiondescribingthemodulationcharacteristicsoftheLCLV;thatis,thedependenceofthephase-modulationu(r,t)onthefeedbackfieldintensitydistributionIFB(r,t)(intensitydistributionontheLCLVphotoconductivelayer).Equation(2)describestransformationofthewavefrontu(r,t)intothefeedbackintensitydistributionIFB(r,t)occurringinthesystem’sfeedbackloop.In(2)Gisanoperatorappliedtofunctionu(r,t),andvectoraandvector-functionP(r)describedependenceofthefeedbackintensityonexternalparametersandfunctionssuchasfeedbacklengthL,inputfieldintensityI0(r)andphaseϕ0(r)distributions.
R1
1464-4266/99/010001+10$19.50©1999IOPPublishingLtd
MAVorontsov
IntoaandP(r)wemayalsoincludeinputsignals,forexamplecontrolsignalsand/oraninputimageIim(r).
FormostLCLVtypesthemodulationfunctionin(1)canbeapproximatedbythefunctionf(IFB)=ptanh(bIFB+c),wherep,bandcareparametersdependentontypeofLCLVandtheoperationalmode[17].Inthevicinityoflowfeedbackintensitiesthemodulationfunctioncanberepresentedasthelineardependencef(IB)∼=KIFB.InthisfeedbackintensityrangetheLCLVactsasaKerr-typenonlinearelement[18].
Themathematicalmodel(1),(2)describingLCLV-based2D-feedbacksystemdynamicswasfirstintroducedin[10]basedonsimplified(phenomenological)considerationsoftheactuallyrathercomplicatedphysicalprocessesinvolvedinLCLVdynamics.Substituting(2)into(1)weobtainasinglereaction–diffusion-typePDE:
τ
∂∂t
u(r,t)=D∇2⊥u(r,t)+F[u(r,t),P(r),a],(3)
wherefunction
F[u(r,t),P(r),a]=f{G[u(r,t),P(r),a]}.2.2.Two-componentreaction–diffusionsystemsCombiningtwoLCLV-based2D-feedbacksystemswearriveatthetwo-componentreaction–diffusion-typemodels[19]:τ∂u
∂t
u(r,t)=Du∇2⊥u(r,t)+Fu[u(r,t),v(r,t)],(4)
τ∂v2
∂t
v(r,t)=Dv∇⊥
v(r,t)+Fv[v(r,t),u(r,t)],(5)whereu(r,t)andv(r,t)aredynamicalvariables(phase-modulationsintroducedbytheLCLVs),τu,τv,DuandDvaretheLCLV’scharacteristicresponsetimesanddiffusioncoefficients,andFuandFvarenonlinearfunctions.
Therichandintriguingnonlineardynamicsofthetwo-componentreaction–diffusion-typePDEhasbeentheinspirationanddeparturepointformanyinvestigators[15,20].Theattractivefeatureinopticalimplementationofnonlinearreaction–diffusionequationsistheparallelnatureofopticalprocessing,whichcanprovideextremelyhighprocessingspeedeveninthecaseofhigh-resolutioninputs.However,thereareseveralproblemsrelatedwithopticalmodelling(solution)ofreaction–diffusion-typeequationsusingLCLV-based2D-feedbacksystems.Oneofthemajorproblemsisrestrictioninthechoiceofnonlinearfunctions(Fin(3);Fu,Fvin(4),(5)).Inclassicalreaction–diffusion-typemodelsthenonlinearityisdescribedbyanN-(orS-)likenonlinearfunction.Moresophisticatednonlinearitiesareneeded,forexampleinimageprocessingbasedoncoupledreaction–diffusion(geometry-driven)equations[16].2.3.Choicesfornonlinearity
ThepossibilitiesforopticalimplementationofdifferentnonlinearitiesusingLCLV-based2D-feedbacksystemsareratherlimited.Hereweconsiderafewoftheavailablechoices.ThespecificN-liketypeofnonlinearfunctionintheformofcosorsinfunctionscanberealizedinaLCLV-basedinterferometerwith2Dfeedback[2,10].In
R2
thiscase,thefeedbackintensityisgivenbyIFB(r,t)=Iin(r){1+γcos[u(r,t)+ϕ(r)]}.InthelinearregionoftheLCLVmodulationcharacteristic,insteadof(1)and(2)weobtain[2,10]:τ∂∂t
u(r,t)=D∇2
⊥
u(r,t)+KIin(r)×{1+γcos[u(r,t)+ϕ(r)+]},(6)whereKisaparameterspecifyingnonlinearitystrength,γ
isthevisibilityoftheinterferencepatterninthefeedbackintensity,andisaphaseshift.
2.4.Nonlineardiffusion–diffraction-typemodelsMorecomplicatednonlinearitytypescanbeimplementedinasystemwithfielddiffractioninthefeedbackloop.TheLCLV-baseddiffractive2D-feedbacksystemcanbedescribedbyacouplednonlineardiffusion–diffraction-typemodel[21](seealso[12,13,18]):τ∂2
∂t
u(r,t)=D∇⊥
u(r,t)+f[IFB(r,t)],whereIFB(r,t)=|A(r,z=L,t)|2,
(7)−2ik
∂A(r,z,t)∂z
=∇2
⊥A(r,z,t),(8)and
A(r,z=0,t)=Iin(r)exp{i[u(r,t)+ϕ(r)]}.
(9)
HereA(r,z,t)isthefieldcomplexamplitudeinthediffractivepartofthefeedbackloopoflengthL,andk=2π/λisthewavenumber.
OpticalFourierfilteringinthefeedbackloopyieldsmodelsofnonlinearintegro-differentialequationsoftypeτ
∂∂t
u(r,t)=D∇2⊥u(r,t)+f[IFB(r,t)],2whereIFB(r,t)=A(r,L,t)h(r−r)d2r
(10)
−2ik
∂A(r,z,t)∂z
=∇2
⊥A(r,z,t),
(11)A(r,0,t)=Iin(r)exp{i[u(r,t)+ϕ(r)]}.
(12)
In(10)h(r)istheFourierfilter’sresponsefunction[7].FourierfilteringcanalsobeappliedtotheLCLV-basednonlinear2Dinterferometer,orcanbeusedinthetwo-componentreaction–diffusion-typesystem.
ThecouplingoftwoLCLVsthroughdiffractivefeedbackgaverisetothetwo-componentdiffusion–diffraction-typemodelanalysedin[22]:τ∂u∂t
u(r,t)=Du∇2⊥u(r,t)+fu[|Av(r,Lv,t)|2],(13)τ∂v
v(r,t)=Dv∇2⊥v(r,t)+fv[|Au(r,Lu,t)|2∂t
],(14)
−2ik
∂Au(r,z,t)∂z=∇2
⊥Au(r,z,t),∂Av(r,z,t)(15)
−2ik
∂z
=∇2
⊥Av(r,z,t),Au(r,0,t)=I(u)
in(r)exp{i[u(r,t)+ϕu(r)]},
(16)
Av(r,0,t)=
I(v)
in(r)exp{i[v(r,t)
+ϕv(r)]}.
Yetmorecomplexsystemdynamicscanbedesignedif
weapplygeometricalcoordinatetransformations(rotation,linearshift,scalechange,etc)inthefeedbackloop(seeforexample[2,10,11,14,21,23]).
3.Hybridopto-electronicnonlinear2D-feedbacksystems
3.1.Analoguesignalprocessingaspects
Allofthepossibilitiesintheopticalmodellingofnonlineardynamicsmentionedsofararequiteattractiveintheframeworkofnonlinearspatial–temporalcomplexitystudies,butveryoftentheyarenotexactlywhatweneedforpracticalapplicationofnonlinearspatio-temporaldynamics.Unfortunately,wemustconfessthatdespitenumerousattemptstodemonstratehowopticalsystemsbasedonnonlinearspatio-temporalphenomenaworkinsolvingpracticalproblems,westillhavenotprovidedavisibledemonstrationonasystemlevel(afewexamplesofspatio-temporaldynamicsapplicationsforatmosphericimagingmodellingaregivenin[24]).Itseemsthatoneofthereasonsforthisnon-successisthestrategythathasbeenpursued.Thisstrategyisbasedontheimplicitassumptionthatamongakaleidoscopeofnonlinearspatio-temporalprocesses,wewillbeabletofindsomethingpotentiallyusefulforapplication.Fromthispointofviewthewiderthepaletteofsystemsandmodelswestudythebetterthechanceforsuccess.Thismaybetrueingeneral,butnotinourparticularcase.Thenonlinearmodelswedealwitharesocomplicatedthatittakesmuchtimeandefforttoanalyse,understand,andrejecteachcandidateforpotentialapplication.
3.2.Imageprocessingbasedonnonlinear-diffusionPDEmodels
Asuccessfulexampleofadifferentstrategyhasbeendemonstratedrecentlyinthefieldofimageprocessingandcomputervision,wherenonlinear-diffusionequationswereappliedtoimageprocessing(noisesuppression,edge-enhancement,etc)[16].ThenonlinearPDEmodels(couplednonlinear-diffusionequations)wereobtainedbyminimizingapredefinedcost-functional.Thiscost-functionalaccommodatestheparticularrequirementsoftheprocessedimageu(r,t)(imagesmoothness,fidelitytotheinputimageg(r),preservationofimage-edges,etc).Thecontinuousgradientdescentprocedureappliedforcost-functionaloptimizationresultedinthefollowingtypeofcouplednonlinear-diffusionequations[25]:∂∂t
u(r,t)=∇2⊥u(r,t)−Ku[1−v(r,t)]2[u(r,t)−g(r)],
(17)∂∂t
v(r,t)=Dv∇2⊥v(r,t)−cv(r,t)+Kv[1−v(r,t)]|∇u(r,t)|,(18)whereDv,Ku,c,andKvareadjustableparameters
(cost-functionalweightingcoefficients).ThePDEsystem
Nonlinearopticaltwo-dimensionalfeedbacksystems
(17),(18)tendstoconvergetoastablesolution—theprocessedimage—providingfornoiseremovalandedge-enhancement.Thespecificformofthecouplednonlinear-diffusionequationsdependsonthechosencost-functional.Comparingequations(17),(18)withthepreviouslydiscussedmodelsindicatesanimportantdifference.TheRHSofthesystem(17),(18)containsbasicarithmeticaloperationsappliedtofunctionsu(r,t)andv(r,t)(subtractionandmultiplication),andalsoincludescalculationofthegradientmodules|∇u(r,t)|.Theseoperations,rathersimplefordigitalsignalprocessing,presentachallengingtaskforopticalimplementation.Theexamplepresentedhereillustratestosomeextentarathertypicalsituation.Ifwedepartfromaninformationprocessingproblemstatementandderiveacorrespondingnonlinearsystemofequationshavingadesirablesteadystatesolution(processedimage,etc),wealmostcertainlyobtainaPDEsystemthatcannotbeimplementedoptically.Theoppositeisalsotrue:ifourmajorconcernisthestudyofnonlinearspatio-temporaldynamicsbasedonopticalimplementation(LCLV-based2D-feedbacksystem,forexample)wehaveahardtimefindingapracticalproblemthatcanbesolvedusingmodelsavailableforopticalrealization.Ontopoftheopticalnonlinearprocessingdrawbacksalreadymentionedwecanaddafewmore:typically,conventionalopticalsystemsarebulky,heavy,vibration-sensitiveandratherexpensive.3.3.Opticalcomputations:newpotentials
Arationalquestionarisesfromtheabovediscussions:whydoweneednonlinearopticalprocessingifpowerfuldigitalcomputersandwell-developeddigitalsignalprocessing(DSP)toolsareavailable?Thereareseveralmotivationstocontinuesearchingforopticalprocessingtechniquesbasedonnonlinearspatio-temporaldynamics,andinsomesensethisistherighttimetodoso.DespitethesimplicityandflexibilityofDSP,solutionofnonlinearPDEsrequirestime-consumingcalculationsandcannotbedoneatreal-timeframerates.TosuccessfullycompetewithDSP,opticsshouldofferfast,inexpensive,flexible,compactandlowpowerarchitectures.Thereisnowaywecanmakethesedemandsrealifwemaintainopticalprocessingpurityasstatedbytheformula:everythingshouldbedoneoptically.Tochallengethedigitalworlditisimportanttohavetherightallies,andthesealliesareopticalmicro-electro-mechanicalsystems(MEMS)andmixed-mode(analogueanddigital)verylargescaleintegration(VLSI)system-basedtechnologyfornonlinearsignalprocessing.3.4.OpticalMEMS
Imagineamachinesosmallthatitisimperceptibletothehumaneye.Imagineworkingmachineswithgearsnobiggerthanagrainofpollen.Imaginethesemachinesbeingbatchfabricatedtensofthousandatatime,atacostofonlyafewpennieseach.Imaginearealmwheretheworldofdesignisturnedupsidedown,andtheseeminglyimpossiblesuddenlybecomeseasy.Aplacewheregravityandinertiaarenolongerimportant,buttheeffectsofatomicforcesandsurfacesciencedominate.
R3
MAVorontsov
Figure1.Actuatedmicro-electro-mechanicalmirrorwith
continuouspositionadjustment(scaleunitof100µmisshownbythewhiteline)[28].
Welcometothemicrodomain,aworldnowoccupiedbyanexplosivenewtechnologyknownasMEMS(MicroElectroMechanicalSystems)or,moresimplymicromachines...[26].
ThisquotedromanticintroductiontoMEMStechnologyreflectstheenthusiasmoftheparticipantsintheongoing‘secondsiliconrevolution.’TounderstandthesignificanceofMEMSforopticsweshouldjustreplacetheword‘machine’inthegivenquotewith‘opticalsystems’.MEMStechnologyallowsthefabricationofrathercomplicatedopticalsystemscomposedoflenses,mirrors,beamsplitters,lasers,andarraysofphoto-detectors,alongwithmicroactuatorsandXYZmicropositioners,onasinglesiliconchip[27].AsanexampleofopticalMEMS,anactuatedsilicon-micromachinedmicromirrorisshowninfigure1[28].Withelectrostaticcombactuatorsintegratedonthesamechip,continuousandhighlyaccurate(betterthan0.2µm)positionadjustmentsofthesemicromirrorsareobtained.OpticalMEMScanmakeopticalprocessingfast,inexpensive,compact,andlowpower.
3.5.Spatiallightmodulatorsonasiliconchip
Nonlinearoptical2Dinformation(image)processingusingopticalMEMSrequiresinformationtoolsfordatainputcompatiblewithsilicontechnology.Recentlydevelopedliquidcrystal(LC)-on-VLSIspatiallightmodulatorsexcellentlymatchopticalMEMSinprovidinghigh-resolutionandrelativelyfast2Dinformationinputtoacoherentopticalsystem[29].ThetypicalLC-on-VLSIspatiallightmodulator(SLM)issimilartoaDRAM(SRAM)memorychip,withathinlayerofLC(nematicorferroelectric)indirectcontactwiththechip’smemory.Memorycellsareelectricallyconnectedtometalmirrors.AlayerofLCissandwichedbetweenthearrayofmirrorsandapieceofglasswithaconductiveelectrode.ThevoltageappliedtoeachLCcellisdeterminedbytheinformationstoredinthechip’smemorycell.ThesevoltagesdrivetheoverlyingLCprovidingincidentlightphase(orpolarization)modulation[30].TheLC-on-VLSIspatiallightmodulator
R4
performsthesameroleastheLCLVdoesinourpreviouslydiscussedsystems,exceptthatwavefrontmodulationiscontrolledelectronicallyanddependsoninformationsenttothechip’smemory.CurrentlyavailableanalogueLC-on-VLSIphaseSLMscanprovideupto512×512resolutionwithafullframeloadingspeedofabout100µsandaphase-modulationdepthofabout0.6µm[31].Thearraysizeisabout8×8mmandthepixelpitchis15µm.
3.6.AnalogueVLSIsystemsforsensoryinformationprocessing
Rapidadvancesinthenumberoftransistorsincorporatedontoasinglesiliconchipandnewdesignandsynthesistechniqueshaveresultedintheappearanceofintegratedcircuitshavinghighsignalprocessingcapabilityonthechip.VLSIimagerswithover500000transistorsarenowcapableofperformingrathercomplicatedanalogueon-chipimageprocessingincludingamplification,imagesubtraction,spatialaveraging,ratiocalculation,edgeenhancement,andlocalgaincontrolallinreal-time[32].Inconjunctionwiththedynamicalmodelsdiscussedhere,considerthefollowingcontinuous-timepixel-dynamicsequation(node-equation)whichcanbeimplementedonanalogueVLSIsystems:τd
dt
u(rij,t)+u(rij,t)=F[u(rij,t),Iin(rij,t),v(rij,t)],(19)
whereu(rij,t)isthedynamicalstateofanindividualpixel(node)withcoordinaterij,(i,jarenodeindices),andτisVLSIsystemresponsetime.DependentonVLSIsystemimplementation,thedynamicalvariableu(rij,t)maybeacharge,voltageorcurrentatthenode.In(19)Iin(rij,t)areinputphotocurrentsfromtheimager’sphotoarray,v(rij,t)areexternalinputsandFisanonlinearfunction.UsingtranslinearMOS-basedcircuitsavarietyofnonlinearsignalprocessingfunctionscanbeimplementedatthepixellevelwithacharacteristicanaloguecalculationrateoftheorderofmicroseconds[33].Pixeldynamicscanalsoincludetheinteractionbetweenneighbouringpixels,providinganaloguelocalspatialaggregation-averaging(diffusiveorresistivenetworks)[32,34].Thusamoregeneralmodelfordynamicsofthepixelnetworkmaybedescribedbythenonlinearequationcontainingaconvolutionintegral:τd
dtu(r,t)+u(r,t)=
F[u(r,t),Iin(r,t),v(r,t)]ρ(r−r)d2r.
(20)
Tosimplifynotationwehaveusedthespace-continuousmodel.Thefunctionρ(r)in(20)describeslocalspatialaveraging.InanalogueVLSIsystemsρ(r)canbeapproximatedbyaGaussianfunctionofwidtha:ρ(r)=exp(−ρ2/a2).
3.7.Opto-electronicmodelsfornonlinear2D-feedbacksystems
Considertheopto-electronicsysteminfigure2thatservesasageneralmodelforthenonlinearimageprocessingsystemdiscussedbelow.Thesystemconsistsofahigh-resolutionphasespatiallightmodulator,forexamplethe
Figure2.Genericmodelforanonlinear2D-feedback
opto-electronicsystem.
LC-on-VLSIphaseSLM,andaphotoarray(VLSIimager)opticallymatchedwiththephasemodulatorinthesensethatthephotoarrayhasthesamesizeandpixelgeometry.TheSLMandphotoarrayarecoupledthroughcoherentwavediffractionovertheshortdistanceL.AnanalogueVLSIchipinterfaceswithboththeSLMandphotoarraytoprovideprogrammable2D-feedback.Dependingontheproblem’scomplexity,feedbackcomputationmaybeperformedontheimagerchip.InthiscasetheVLSIimageriscoupleddirectlywiththephaseSLM.UsingadvancedopticalMEMSandVLSItechnologies,thissystemcanpotentiallybeimplementedasanintegratedmicromachinedopto-electronicdevicethatincorporatesbothopticalandanalogueVLSIelectroniccounterparts.
Thesystem’smathematicalmodel(continuousform)includesthefree-spacepropagationequationfordiffractionofthecoherentwaveA(r,t):−2ik
∂A(r,z,t)2
∂z
=∇⊥A(r,z,t),
(0zL)
A(r,0,t)=I1/2
in(r)exp{i[u(r,t)+ϕ(r)]},
(21)
andtheequationdescribingfeedbacksignalprocessingperformedontheanalogueVLSIchip:τ
d
dtu(r,t)+u(r,t)=
F[u(r,t),IFR(r,t),v(r,t)]ρ(r−r)d2r,(22)
IFB(r,t)=|A(r,z=L,t)|2.
Hereu(r,t)isthewavefrontmodulationcomponentintroducedbythephaseSLM,andIin(r)andϕ(r)aretheinputwaveintensityandwavefrontmodulation,respectively.TheintensitydistributionIFB(r,t)isregisteredbythephotoarrayandusedasaninputfortheVLSIfeedbacksystem.Nextweconsiderspecificexamplesofopto-electronicsignalprocessingbasedonthedynamicalmodel(21),(22).
Nonlinearopticaltwo-dimensionalfeedbacksystems
4.Informationprocessingwithnonlinear2D-opto-electronicfeedbacksystems
4.1.Opto-electronicKerr-slice/feedback-mirrorsystem:adaptivephasedistortionsuppression
High-resolutionadaptive(real-time)wavefrontphasedistortioncompensationisanimportanttaskforanumberofapplications,forexampleinastronomy,lasercommunicationsandmedicine.In[7,18]itwasshownthatwavefrontphasedistortioncompensationcanbeobtainedusingthenonlinearspatio-temporaldynamicsofaKerr-slice/feedback-mirrortypemodel(7)–(9).Opto-electronicimplementationoftheKerr-slice/feedback-mirrortypemodelcanbeobtainedusingthebasicsystemarchitectureinfigure2.ByneglectingthediffusiontermfornodedynamicsintheKerr-slice/feedback-mirrormodel(7)–(9),insteadof(22)wehave:
τd
dt
u(r,t)+u(r,t)=KIFB(r,t),
(23)whereK<0isthefeedbackgaincoefficient.Accordingly,themodelrequiresrelativelysimplefeedbacksignalprocessingatthepixellevel.PhasedistortioncompensationspectralrangeiscontrolledthroughchoiceofthediffractionlengthL,ascompensationefficiencydependsonthefeedbackgaincoefficient.Thequalityofphasedistortioncompensationimproveswithgainincrease.However,spatio-temporalinstabilitiesareasignificantproblemandoccurwhen1
thecoefficient|K|exceedsthethresholdvalueKth=[1+sin(q2L/k)]−1,whereqiswavefrontphasespatial2distortionfrequency[7,18].Topreventinstabilities,morecomplicatedanalogueVLSIfeedbacksignalprocessingthatincludeslocalspatialaveragingbasedonlinearresistiveorMOStranslinearnetworkcircuitarchitecturecanbeused.Fornodedynamicswehavethefollowingmodel[7]:
τd
dt
u(r,t)+αu(r,t)=KIFB(r,t)ρ(r−r)d2r,(24)
whereαisacoefficientcontrollingthecharacteristicsystemconvergencetime.Localspatialaveragingwithinthewindow-functionρ(r)=exp(−ρ2/a2)behavessimilartolow-passfeedbacksignalspatialfiltering.ThewidthoftheGaussian-typewindow-functionacanbechosenlargeenoughtosuppressinstabilities.Thenonlinearopto-electronicsystemdescribedbyequations(21),(24)providesefficientwavefrontphasedistortioncompensationforaninputwavehavingauniformintensitydistribution[Iin(r)=const].Non-uniformityintheinputintensitydistributioncanbetakenintoaccountbyusingmodifiedanaloguesignalprocessing.Thecorrespondingequationreads[35]τd
dtu(r,t)+αu(r,t)=K
[IFB(r,t)−Iin(r)]ρ(r−r)d2r.
(25)
Numericalresultsofhigh-resolutionphasedistortioncompensationbasedonparallelopto-electronicsignalprocessingasdescribedbythemodel(21),(25)areshowninfigure3[35].Dynamicalprocessconvergencetypicallyoccursduringatimeintervalof3–5τ.ExistingCMOStechnologyissufficienttobuildafeedbackVLSIimagerto
R5
MAVorontsov
Figure3.Realizationsofthedistortedinputwavefront(a),and
wavefrontcorrectedbythenonlinearopto-electronicsystemoutput(b).WavefrontdistortioncorrespondstotheKolmogorovspatialspectrum.
performpixeldynamicsinaccordancewithequation(25),providingaresolutionontheorderof200×200pixelsandanoperationalspeedofafewkHz.Notethatthedynamicalmodel(21),(25)isamodifiedversionoftheclassicalopticalKerr-slice/feedbackmirrormodelanditsLCLV-based2Ddiffractivefeedbacksystemimplementation.Despitethesesimilarities,itwouldbeachallengingtasktorealizethesemodifiednonlineardynamicsusingpurelyopticalmethods.4.2.Imagingprocessingforreal-timemotiondetectionThegeneralarchitectureshowninfigure2foranopto-electronic2D-feedbacksystemcanbeeasilymodifiedforthereal-timedetectionofmovingobjects[36].Thesystemschematicisshowninfigure4.AsetofimageframesfromacameraissenttothephaseSLM.TheSLMconvertstheinputimagesIim(r,t)intothecoherentwavephase-modulationϕ(r,t)=γIim(r,t),whereγisthephase-modulationdepthcoefficient.Thisphasemodulationisconsideredastheinputwavefrontdistortion,whichcanbecompensatedusingtheadaptivesystemdiscussedabove.Compensationoccursonlyforstationary-stateorrelativelyslowlychangingimages.Byelectronicallycontrollingthecharacteristicdynamicalprocessconvergencetimeαonecanadjustthesystemdynamicsinordertodetectnon-stationaryimageelementsintheinputimagestream.Asaresult,fortα−1thestationary-statefeedbacksignalδ(r,t)=ϕ(r,t)+u(r,t)approachesauniformintensitydistributionleadingtocontrastloss.Asshowninfigure5thelossofcontrastleastimpactsmovingcomponentsoftheinputimage,whichareclearlyseenontheblurredbackground.Theopto-electronicsystemwith2D-feedbackdescribedbythesystemofequations(21),(24)withϕ(r,t)=γIim(r,t)thusenablesdetectionofmovingobjects.
4.3.Opto-electronicmodelsforthenonlineardiffusionequation
Considerthepossibilitiesforopto-electronicimplementationofthenonlinear-diffusiontypemodels.Asshownintheappendix,diffractionofthepurelyphase-modulatedcoherentwaveA(r,0,t)=A0exp{iu(r,t)}overtheshortdistanceLresultsintheintensitydistribution
Id(r,t)∼=I0[1−L/(kb2)∇2
⊥
u(r,t)],(26)
R6
Figure4.Opto-electronic2D-feedbacksystemformovingobject
detection.ThesignalcontrollingthephaseSLMI(r,t)iscomposedofthefeedbacksignalIc(r,t)andtheinputimageIim(r,t)[u(r,t)=γIc(r,t)].
Figure5.DetectionofamovingcarasseenatthemonitorMinfigure4:(a)singleinputimageframeIim(r,t);(b)outputimageI(r,t=1.5τ)forasinglestationary-stateinputimageframeIim(r);(c)and(d)outputimagesforinputimagestreamcorrespondingtoamovingcar,(c)I(r,t=1.5τ)and(d)I(r,t=3.5τ).
whichisproportionaltotheLaplacianoperatorappliedtothephase-modulationfunctionu(r,t).In(26)I0=A2uniformintensitydistributionandthecoordinates{x,y0isa}arenormalizedbythepixelsizeb.ThisapproximationisvalidforrelativelyshortdiffractivedistanceswhereL/(kb2)1.FortypicalLC-on-VLSIspatiallightmodulatorswithapitchsizeof∼20µmtosatisfythisconditionthepropagationdistanceshouldbeontheorderof2–4mm.Thisopensthepotentialforintegrated(on-chip)implementationoftheLaplacianoperatorcalculation.BecauseoftheshortdiffractivedistanceboththephaseSLMandphotoarray(coupledwiththeSLMthroughwavediffraction)canbe
Figure6.Opto-electronicsystemforanaloguenonlinear-diffusionequationmodelling.
Figure7.Real-timeimageedge-detectionsystembasedon
phase-imagediffraction.
placedonthesamesiliconchipandtheentiresystemcanbedesignedasanopticalMEMS.
Thesystemcanalsobeusedasanelementarybuildingblockforparallelopto-electroniccalculations(modelling)ofthepreviouslydiscussednonlinear-diffusionPDEs.Considertheschematicfornonlinear-diffusionequationimplementationshowninfigure6.AcoherentinputwaveA0passesthroughaphaseSLMdrivenbyananalogueVLSIsystem.Assumealineardependencebetweenthecontrolimage(signal)appliedtotheSLMandthephase-modulationu(r,t)introducedbythephaseSLM.Theintensitydistributionintheplaneofthephotoarray(planez=L)Id(r,t)isusedasaninputforanalogueVLSIsignalprocessing.Thissignalprocessingincludesthefollowinganaloguecalculationsatpixellevel:(a)subtractionofthemeaninputintensityI0;(b)calculationofthenonlinearfunctionf[u(r,t)];and(c)integrationovertimetofthesumofthesignalsf[u(r,t)]+[Id(r,t)−I0].Node-dynamicscanbedescribedbytheequationgivenhereintermsofphase-modulation:
τ
d
dt
u(r,t)=K[Id(r,t)−I0]+f[u(r,t)],(27)
Nonlinearopticaltwo-dimensionalfeedbacksystems
Figure8.Infraredimages:inputimage(a);imageprocessedbyedgedetectionsysteminfigure7(b);imageprocessedbynonlinearinterferometerinfigure9(c).
whereτisthecharacteristictimeoftheVLSIsystemsignalprocessing,andKisacoefficient.Usingapproximation(26)weobtain
τ
ddt
u(r,t)=Dd∇2⊥u(r,t)+f[u(r,t)],(28)
whereDd=KI0L/(kb2)istheeffectivediffusioncoefficient.Thuswehavearrivedatthenonlinear-diffusion-typeequation.Initialconditionscanbecreatedusinganadditionalexternalsignal(image)appliedtotheSLM’sinputatthemomentt=0.Combiningtwophase-imagediffractionsystemsinfigure6wecanobtainanopto-electronicsystemforanalogueparallelcomputationofthecouplednonlineardiffusionequations.AnalogueVLSIsystemscanprovideawiderangeofnonlinearitytypesaswellasanumberofparallelarithmeticoperations
R7
MAVorontsov
Figure9.Schematicfornonlinear2D-feedbackinterferometerforreal-timeparallelimageprocessing.
appliedto2Dsignals.Bothoptionsareratherdifficulttoimplementusingpurelyopticaltools.Theoperationalspeedoftheentireopto-electronicsystemislimitedmostlybythespeedoftheSLMandcouldpotentiallybeontheorderofseveralhundredframespersecond.Themaindrawbackofparallelanaloguecalculationsistherelativelylowcalculationaccuracy—typicallylessthanonepercent.
4.4.Real-timeimageedgeenhancementbasedonphaseimagediffraction
OpticalcalculationoftheLaplacianoperatorcanbeusedforreal-timedetectionofimageedges—agenericoperationforcomputervisionandautomatictargetrecognitiontechniques.Thesimpleopto-electronicedge-detectionsystemiscomposedofacameraconnectedwithahigh-resolutionphaseSLMandaphotoarraylocatedatadistanceLfromtheSLM(figure7(b)).Inaccordancewithexpression(26)diffractionofthephase-modulatedwave(phaseimagediffraction)overtheshortdistanceLresultsintheintensitydistributionId(r,t)∼=I0[1−
22
L/(kb)∇⊥Iim(r,t)]proportionaltotheLaplacianoperatorappliedtotheinputimageframeIim(r,t).Signalprocessingincludessubtractionofthemeanimagecomponentandgaincontrol.Anexampleofopticaledge-imagedetectionfortheIRimageframeisshowninfigure8.Real-timedetectionofimageedgescanberealizedusinganumberofopticalimageprocessingsystems,forinstanceFourierfiltering,andholographicandnonlinearopticstechniques[29].Theopto-electronicsystemshowninfigure7hasperhapsthesimplestopticalimplementation—free-spacepropagationofaphasemodulatedwave.
4.5.Imagesegmentationusinganonlinear
interferometerwith2D-opto-electronicfeedbackNonlineardynamicsofthenonlinearinterferometer(equation(6))canbeimplementedusingtheopto-electronicalsystemshowninfigure9.Thesystem’sopticalpartrepresentsaMach–Zenderinterferometerhavingphase
R8
SLMsinbothlegs.Onephasespatiallightmodulator(SLM1)isdirectlyconnectedtoanimagingcameraandthesecondone(SLM2)isusedtointroducethecontrollablephase-modulationu(r,t).ThephotoarrayP1registerstheinterferencetermIout=Iin{1+γcos[u(r,t)+ϕ(r)+]},wherethephase-modulationcomponentsareϕ(r,t)=γIim(r,t)andu(r,t)=γIc(r,t),andisaconstant
2
phaseshift.TocreatethediffusiontermD∇⊥u(r,t)theapproachbasedonphaseimagediffractiondiscussedaboveisused.Forthis,photoarrayP2islocatedadistanceLfromSLM2.Thisphotoarrayregisterstheintensitydistribution
2
Id(r,t)proportionaltotheLaplacianoperatorD∇⊥U(r,t).Throughsignalprocessingthefollowingnode-dynamicsareperformed:
∂
u(r,t)=µId(r,t)+K{1+γcos[u(r,t)+ϕ(r)+]},∂t
(29)
whereµ,,τandKareconstantcoefficients.The2D-feedbackinterferometershowninfigure9canbeusedforanalogueimageprocessingandadaptiveopticsapplications.Withthesethepartofthesystemrelatedwithimplementationofthediffusionterm,aswellasthephotoarrayP2infigure9,canbeomitted.Experimentalresultsofadaptivephasedistortioncompensationusingthe2D-feedbackinterferometerarepresentedin[37].Inthereferencedcasethefunctionϕ(r,t)correspondedtophaseaberrationsintroducedintoonelegoftheinterferometer.
Nonlineardynamicsoftheopto-electronic2D-feedbackinterferometercanbeusedforreal-timeparallelimageprocessing:edge-detectionandimagesegmentation.Equation(29)wasanalysedthroughnumericalsimulationusingasaninput(functionϕ(r,t))theIRimageshowninfigure8(a).Theobtainedstationary-stateoutputimagepresentedinfigure8(c)illustratesimageedgeenhancementandsegmentationofdifferentimageparts.τ
Appendix
Considerdiffractionofthepurelyphase-modulatedcoherentwaveA(r,z=0)=A0exp{iu(r)}overthedistance
L.RepresentthefieldcomplexamplitudeA(r,z)intheformA(r,z)=a(r,z)exp{iφ(r,z)},wherea(r,z)isthemodulusofthefieldcomplexamplitudeandφ(r,z)isaphasemodulation.Substitutethisexpressionintothefree-spacepropagationequation(21).Afterthesetofderivationsweobtain
−2k∂a∂z
=2(∇a∇φ)+a∇2⊥φ,(30a)
2ka∂φ2∂z
=∇⊥a−a[(∂φ/∂x)2+(∂φ/∂y)2].(30b)
ForaninputwavewithauniformintensitydistributionandarelativelyshortpropagationdistanceLwecanassumethat
|∇a||∇φ|and(∇a∇φ)a∇2
⊥φelsewherealongthepropagationpath.Inthiscaseinsteadof(30)weobtain
k∂I/∂z=−I∇2⊥
φ,(31a)2k
∂φ
∂z
=(∂φ/∂x)2+(∂φ/∂y)2,(31b)
whereI=|a|2isintensitymodulationalongthepropagationdistance.Assumingλ|∇φ|1wecanneglectthephase-modulationchangecausedbywavepropagation;thatis,φ(r,z)≈φ(r,z=0)=u(r).Inthiscaseequation(31a)
hastheanalyticalsolutionI(r,z)=A20exp{−kz∇2
⊥u}.FortheshortpropagationdistanceLthefollowingapproximation
isvalid:I(r,z=L)=Id(r)∼=I0[1−L/(kb2)∇2
u(r)],wherethetransversecoordinatesarenormalized⊥
byaparameterb(thesmallestspatialscalerelatedwiththefunctionu(r)).References
[1]GiusfrediG,ValleyJF,PonR,KhitrovaGandGibbsHM
1988OpticalinstabilitiesinsodiumvaporJ.Opt.Soc.Am.B51181
[2]AkhmanovSA,VorontsovMA,IvanovVYu,LarichevAV
andZheleznykhNI1992Controllingtransverse-waveinteractionsinnonlinearoptics:generationandinteractionofspatio-temporalstructuresJ.Opt.Soc.Am.B978[3]AbrahamNBandFirthWJ1990Overviewoftransverse
effectsinnonlinear-opticalsystemsJ.Opt.Soc.Am.B7951
[4]LugiatoLAandElNashieMS(ed)1994ChaosSolitons
Fractals41251(specialissue)
[5]LugiatoLA,BrambillaMandGattiA1998Opticalpattern
formationAdvancesinAtomic,MolecularandOpticalPhysicsedBBedersonandHWalthers(London:Academic)
[6]RosanovNN1996Transversepatternsinwide-aperture
nonlinearopticalsystemsProgressinOpticsvolXXXV,edEWolf(Amsterdam:Elsevier)
[7]DegtiarevEVandVorontsovMA1995Spatialfilteringin
nonlinear2D-feedbacksystems:phasedistortionsuppressionJ.Opt.Soc.Am.B121238
VorontsovMAandSamsonBA1998Nonlineardynamicsinanopticalsystemwithcontrolled2D-feedback:
black-eyepatternsandrelatedphenomenaPhys.Rev.A57[8]MartinR,ScroggieAJ,OppoGLandFirthWJ1996
Stabilization,andtrackingofunstablepatternsbyFourierspacetechniquesPhys.Rev.Lett.774007
[9]GibbsHM1985OpticalBistability—ControllingLightwith
Light(Orlando,FL:Academic)
[10]VorontsovMA,DumarevskyYuD,PruidzeDVand
ShmalhauzenVI1988Auto-waveprocessesinopticalfeedbacksystemsIzv.ANUSSRFiz.52374
Nonlinearopticaltwo-dimensionalfeedbacksystems
AkhmanovSA,VorontsovMAandIvanovVYu1988Large-scaletransversenonlinearinteractionsinlaserbeams;newtypesofnonlinearwaves;onsetofopticalturbulenceJETPLett.47611
[11]VorontsovMAandMillerWB(eds)Self-OrganizationinOpticalSystemsandApplicationsinInformationTechnology(Berlin:Springer)
[12]
ThueringB,NeubeckerRandTschudiT1993TransversepatternformationinliquidcrystallightvalvefeedbacksystemOpt.Commun.102111
NeubeckerR,OppoGL,ThueringBandTschudiT1995Patternformationinaliquid-crystallightvalvewithfeedback,includingpolarization,saturation,andinternalthresholdeffectsPhys.Rev.A52791
[13]
PampaloniE,RamazzaP-L,ResidoriSandArecchiFT1993Roll–hexagontransitioninaKerr-likeexperimentEurophys.Lett.24647
ArecchiFT,LarichevAV,ResidoriS,RicklinJCandVorontsovMA1995Experimentalobservationofspace-timechaosinanonlinearopticalsystemwith2D-feedbackOpt.Commun.117492
[14]
AdachiharaHandFaidH1993Twodimensionalnonlinearinterferometer—patternanalysisanddecayofspiralsJ.Opt.Soc.Am.B101242
ZheleznikhNI,LeBerreM,RessayreFandTalletA1994RotatingspiralwavesinanonlinearopticalsystemwithspatialinteractionChaos,SolitonsandFractals(Oxford:Pergamon)
VorontsovMA,IroshnikovNGandAbernathyR1994Diffractivepatternsinanonlinearoptical2D-feedbacksystemwithfieldrotationChaos,SolitonsandFractals(Oxford:Pergamon)
[15]
HakenH1977Synergetics,AnIntroduction(Berlin:Springer)
NicolisG1995IntroductiontoNonlinearScience(Cambridge:CambridgeUniversityPress)
[16]terHaarRomeyBM(ed)1994Geometry-DrivenDiffusioninComputerVision(Dordrecht:Kluwer)
[17]VorontsovMAandLarichevAV1991Adaptive
compensationofphasedistortionsinnonlinearsystemswith2-DfeedbackProc.SPIE1409260
[18]FirthWJandVorontsovMA1993AdaptivephasedistortionsuppressioninanonlinearsystemwithfeedbackmirrorJ.Mod.Opt.401841
[19]
DegtyarevEVandVorontsovMA1995OpticaldesignkitfornonlinearspatialdynamicsSelf-OrganizationinOpticalSystemsandApplicationsinInformationTechnology(Berlin:Springer)
VorontsovMA,RakhmanovANandShmalhauzenVI1992Opticalself-oscillatorymediumbasedonaFabry–PerotinterferometerSov.J.QuantumElectron.2256[20]KuramotoY1984ChemicalOscillations,WavesandTurbulence(Berlin:Springer)
[21]
VorontsovMA1993‘Akhseals’asanewclassof
spatio-temporallightfieldinstabilitiesQuantumElectron.23(4)269
PampaloniE,RamazzaP-L,ResidoriSandArecchiFT1995Phys.Rev.Lett.74258
RubinsteinBYandPismenLM1997Resonant
two-dimensionalpatternsinopticalcavitieswithrotatedbeamPhys.Rev.A564264
[22]DegtiarevEVandWataginVG1996Stabilityanalysisofatwo-componentopticalsystemwith2-DfeedbackOpt.Commun.124309
[23]
DegtyarevEVandVorontsovMA1992Spatialdynamicsofatwo-componentopticalsystemwithlarge-scaleinteractionsMol.Cryst.Liq.Cryst.Sci.Technol.-B:NonlinearOpt.3295
[24]
RicklinJC,VorontsovMA,CarhartG,GoseDandMillerWB1995TurbulentphasescreenforstudyofimagingsystemperformanceJ.Mod.Opt.4213
VorontsovMA,RicklinJCandCarhartGW1995Optical
R9
MAVorontsov
simulationofphasedistortedimagingsystems:nonlinearandadaptiveapproachOpt.Engng343229
[25]ProesmansM,PauwelsEandvanGoolL1994Coupledgeometry-drivendiffusionequationsforlow-levelvisionGeometry-DrivenDiffusioninComputerVisionedBMterHaarRomey(Dordrecht:Kluwer)
[26]
SmithJH,SniegowskiJJ,McWhorterPJandRomigADJr1998Intelligentmicrosystems:strategyforthefutureSemicond.Int.93(webpage
http://www.mdl.sanida.gov/Micromachine/index.html)[27]WuMC1997Micromachiningforopticalandopto-electronicsystemsProc.IEEE851833
[28]
KiangM-H,SolgaardO,MullerRSandLauKY1996Silicon-micromachinedmicromirrorswithintegrated
high-precisionactuatorsforexternalcavitysemiconductorlasersIEEEPhoton.Technol.Lett.8v195(webpagehttp://bsac.eecs.berkelev.edu/visitors.html)
[29]
BarbierPRandModdelG1997Spatiallightmodulators:processinglightinrealtimeOpt.Photon.News816–21EfronU(ed)1995SpatialLightModulatorTechnology:Materials,Devices,andApplications(NewYork:Dekker)[30]
GourlayJ,O’HaraA,StevensAJandVassDG1996AcomparativeinvestigationintoplanarizedliquidcrystaloversiliconspatiallightmodulatorsJ.Mod.Opt.431
R10
(webpage
http://www.ph.ed.ac.uk/optics/research/slm.html)
[31]SeratiS,SharpG,SeratiR,McKnightDandStookleyJ1995128×128analogliquidcrystalspatiallightmodulatorSPIE249055(webpagehttp://www.bnonlinear.com/)[32]AndreouAGandBoahenKA1996TranslinearcircuitsinsubthresholdMOSAnalogInteg.CircuitsSignalProcess.9141
[33]MeadCA1990NeuromorphicelectronicsystemsProc.IEEE781629
[34]LippmannRPandTouretzkyDS(ed)1995Neural
InformationProcessingSystemsvol3(SanMateo,CA:MorganKaufmann)
[35]SivokonVPandVorontsovMA1998High-resolutionadaptivephasedistortionsuppressionbasedsolelyonintensityinformationJ.Opt.Soc.Am.A15248
[36]VorontsovMAandSamsonBA1999Parallelnonlinearopto-electronicimageprocessingforreal-timemotiondetectionOpt.Engngtobepublished
[37]
DouR,VorontsovMA,SivokonVPandGilesMK1997Iterativetechniqueforhigh-resolutionphasedistortioncompensationinadaptiveinterferometerOpt.Eng.36(12)3327
因篇幅问题不能全部显示,请点此查看更多更全内容