搜索
您的当前位置:首页正文

Luminosity segregation in three clusters of galaxies (A119, 2443, 2218)

来源:赴品旅游
Mon.Not.R.Astron.Soc.000,1–??(2005)Printed5February2008

A(MNLTEXstylefilev2.2)

Luminositysegregationinthreeclustersofgalaxies

(A119,2443,2218)

MichaelB.Pracy1,2,SimonP.Driver2,RobertoDePropris3,WarrickJ.Couch1andPaulE.J.Nulsen4

ofPhysics,UniversityofNewSouthWales,SydneyNSW2052,Australia

StromloObservatory,TheAustralianNationalUniversity,WestonCreek,ACT2611,Australia

3AstrophysicsGroup,HHWillsPhysicsLaboratory,UniversityofBristol,TyndallAvenue,BS81TL,UK

4Harvard-SmithsonianCenterforAstrophysics,60GardenSt.,Cambridge,MA02138,USA;onleavefromtheUniversityofWollongong,NSW2522,Australia

2Mount1School

arXiv:astro-ph/0510129v1 5 Oct 2005Received0000;Accepted0000

ABSTRACT

Weusedeepwide–fieldV-bandimagingobtainedwiththeWideFieldCameraattheprimefocusoftheIssacNewtonTelescopetostudythespatialandluminositydistributionofgalaxiesinthreelowredshift(0.04talprojectedluminositydistribution(within1h−0.7Mpcoftheclustercentre)canbewellrepresentedbyasingleSchechter(1976)functionwithmoderatelyflatfaint–end

.07+0.10+0.08

slopes:α=−1.22+0−0.06(A119),α=−1.11−0.09(A2443)andα=−1.14−0.07(A2218).Weperformageometricdeprojectionoftheclustergalaxypopulationandconfirmthatno‘statisticallysignificant’evidenceofachangeintheshapeoftheluminositydistributionwithcluster-centricradiusexists.Again,theexceptionbeingA2218whichexhibitsacoreregionwithaflatterfaint–endslope.

Keywords:galaxies:clusters:general—galaxies:luminosityfunction:massfunction

1INTRODUCTION

Galaxiesofdifferenttypesinclustersareknowntohavedifferentprojectedspatialdistributions.ThiswasrealizedbyOemler(1974),whoshowedthatlessluminousgalaxieshaveamoreextendedprofilethanthemoremassiveellip-ticals.Melnick&Sargent(1977)andDressler(1980)iden-tifiedwhatisnowknownasthe‘morphology-density’re-lation,wheretherelativefractionsofelliptical,lenticular(S0)andspiralgalaxiesdependonthesurfacedensity,whileWhitmoreetal.(1993)arguedthatthesetrendsarebettercorrelatedwithcluster-centricradius.Inarecentcompre-hensivestudyofanensembleclusterbuiltfrom59nearbyrichclustersBivianoetal.(2002),demonstratedclearsegre-gationbetweenellipticals,earlyandlate-typespirals.ThisisalsoseeninasingleHSTmosaicofAbell868byDriveretal.(2003)whichconcludesthatclustercoresaredevoidof,oratleastdepleted,inlate-typesystems.

However,aswellasmorphologicalsegregation,ev-idenceisalsoemergingforluminositysegregation.Rood&Turnrose(1968)arguedthatdwarfswerelesscon-centratedthangiantsintheComacluster;Capelatoetal.(1981)detectedamass-densityrelationinAbell196;Yepesetal.(1991)studiedluminositysegregationinanum-berofclustersandfoundthatthedegreeofsegregationcorrelateswiththedynamicalstateofthecluster.ThestudyofFerguson&Sandage(1989)inVirgoandFor-naxdemonstratedthatdwarfellipticalswerehighlycon-centratedleadingtoadivisionofthedwarfpopulationintodistinctstronglyclusterednucleateddwarfellipticalsandadistributedpopulationconsistingofnon-nucleateddwarfellipticalsanddwarfirregulars.IntheComaclus-ter,Loboetal.(1997)andKashikawaetal.(1998)found

2Michael.B.Pracyetal.

evidenceforstrongluminositysegregation,withthegiantsbeingclumpedintwosubstructureswhilethedwarfstracedamorediffuseandregulardistribution.Andreon(2002)ar-guedthatsomeformofmasssegregationisalsoatworkinthez=0.31clusterAC118(alsoknownasAbell2744).Thegiantellipticalsandlenticularsmayalsobekinemati-callysegregated(Stein1997),suggestingthattheseobjectsaretheoriginalkerneloftheclusterswhilespiralsanddwarfsarecomparativelylatearrivals.Conversely,Bivianoetal.(2002)findthattheonlyevidenceforluminositysegrega-tionisforellipticalsoutsideofsubstructuresintheirensem-blecluster.

Smithetal.(1997)andDriveretal.(1998)foundthatthedwarf-to-giantratioshowsatrendwithdensityand,be-causeoftheapproximatelysphericalshapeofclusters,withradius.Thisleaddirectlytotheideaofadwarf-densityre-lation(Phillippsetal.1998).Togetherwithpreviouswork(Loboetal.1997;Kashikawaetal.1998)thismaysuggestthatdwarfsareespeciallyaffectedbytheclusterenviron-ment,asonewouldexpectforsuchfragileobjects.Pracyetal.(2004)haverecentlyinvestigatedluminos-itysegregationusingawide,deepmosaicofHSTimagesofAbell2218andfoundevidencethatdwarfgalaxiesavoidthecentralregionsofthisclusterandtraceamorespa-tiallyextendeddistribution.AsimilarresultwasfoundfortheNGC5044groupbyMathewsetal.(2004)andforasampleofloosegroupsbyGirardietal.(2003).Ifthesegre-gationfordwarfsisreal,itmayoriginatefrominitialcondi-tions,wherelowluminositygalaxiesareonlynowin-fallingintoclusters(e.g.,Crotonetal.2005),oritmaybeduetoprocessesinternaltoclusters,suchastidaldisruptionandgalaxyharassment.Forthesereasons,itisimportanttoin-vestigatetheexistenceofluminositysegregationfordwarfsinabroaderrangeofobjectsandtostudyitscorrelationwithclusterproperties.Thisisnowfeasiblebywide–fieldimagingofrelativelynearbyclusterswithpanoramicmosaiccamerason2mtelescopes,andwepresentheretheresultsofsuchastudyforthreeclustersobservedfromtheIsaacNewton2.5mTelescopewiththeWideFieldCamera.Inthispaperweuserelatively–deepwide–fieldimagingofthreegalaxyclustersintheredshiftrange0.042THEDATA2.1

TheObservations

ThesampleconsistsofthreeAbellclusters:A119(Rich-ness=1,BM=II-III,z=0.044),A2443(Richness=2,BM=II,z=0.108)andA2218(Richness=4,BM=II,z=0.181).Theobservationswereobtainedonthenightsof2nd&3rdSeptember2000usingtheWideFieldCamera(WFC)mountedattheprimefocusoftheIsaacNewtonTelescope(INT).TheWFCconsistsofamosaicoffour2048×4096thinnedEEVCCDswithaplatescaleof0.333arcsec/pixel.Thetotalskycoverageis0.287deg2perpointing.Theimag-ingofeachclusterconsistsoffourpartiallyoverlappingpointingswiththeWFC,theexceptionbeingthehigherredshiftclusterA2218whichisamosaicofjust2pointings.EachclusterwasimagedthroughtheVfilterwithanexpo-suretimeof1200s.AsummaryoftheobservationsisgiveninTable1.

2.2Datareduction

ThedatareductionwasperformedbytheCambridgeAstro-nomicalSurveyUnit(CASU)andfulldetailsofthepipelineprocedurecanbefoundinIrwin&Lewis(2001).Insum-mary,thedataarefirstbiassubtractedandtrimmed.Badpixelsandcolumnsareinterpolatedoverusingdatafromneighbouringregions.Allfourchipsarethencorrectedfornon-linearbehaviourinthetwoanalogue-to-digitalconvert-ers.ThedataarethenflatfieldedusingmasterskyflatsandagaincorrectionisappliedsothatalltheCCDshavethesamezero-point.Finally,anastrometricsolutionisderivedbymatchingbrightstarsinthefield-of-viewofeachchiptotheGuideStarCatalog.

2.3Photometriccalibration

FourLandolt(1992)standardstarfields(SA92,SA95,SA110andSA113)wereobservedatvariousair-massesthroughouteachnight.Foreachobservationofastandardstarazero-pointwascalculated:ZPstar=m+2.5log

f

Luminositysegregationinthreeclustersofgalaxies

Table1.Datacharacteristics.

3

Abell119Abell2443Abell2218

00h56m21s22h26m07s16h35m54s−01o1547

′′′

+17o2017

′′′

+66o1200

′′′

0.0440.1080.1811200120012001.141.180.944420.850.820.459.750.4120.513.7315.0716.40

magparameterwasusedtomeasuretotalgalaxymag-nitude(hereafterdenotedV);thiscorrespondstoaKron(1980)extractionaperture,exceptforcrowedregionswhereanextrapolatedisophotalmagnitudeisused.TheKronex-tractionapertureissetto2.5timesRKwhereRKisthefirstmomentoftheimagedistribution.Inregionswherepoint-ingsoverlap,theduplicateobjectswereremovedfromthecatalogs.2.5

Exclusionregions

Aftertheinitialobjectdetectioneachfieldwasvisuallyin-spectedandanyCCDdefects,verybrightstars,diffractionspikesandsatellitetrailscausingspuriousdetectionswereidentified.Circularandrectangularregionsenclosingtheseareasweredefinedandexcludedfromthecatalogs.Inad-dition,theareaswithin20pixelsoftheCCDedgeandthevignettedcornerofCCD3werealsoexcluded.2.6

Objectclassification

Weusedthepositionofobjectsinthecentralsurfacebrightness–magnitude(µo–V)planetoclassifyobjectsaseithergalaxies,starsorcosmicrays.Thedistributionofa

subsetofdetectedobjectsinthisplane,foreachcluster,isillustratedinFig.2.Thecentralsurfacebrightnesswascal-culatedinacircularaperturewithanareaequaltothatofthedetectioncriterion(i.e.,8pixels).2.6.1

Cosmicrayrejection

InFig.2agroupofobjectswithahighcentralsurfacebrightness(atagivenmagnitude)isclearlydiscernible(up-perright).Theseobjects,whichhavesurfacebrightnesseshigherthanthatofstars,arecosmicrays.Wethereforede-finearegionintheµo–Vplanesuchthat:µo≤aV+b

(3)

andclassifyallobjectsinthisregionascosmicrays.Equa-tion(3)isshownasthedot-dashedlineinFig.2.Theslope(a)andintercept(b),werechosenseparatelyforeachclus-ter,tobestmatchthedata.TheobjectsclassifiedascosmicraysareshownasbluepointsinFig.2.2.6.2

Star-galaxyseparation

Theprocessofstar-galaxyseparationbeginsbyidentify-ingsaturatedstarsinthecatalogs.StarsbrighterthanV≈17.2magaresaturated,theseareclearlyidentifiableintheµo–Vplaneasahorizontallocusofpointswithµo<18.0magarcsec−2.Weclassifyobjectswith:µo<18.0andV≤17.2

(4)

asfloodedstars(horizontaldashedlineinFig.2).ThestellarlocuscanbeseeninFig.2asadiagonallocusofpoints(red)withahighersurfacebrightnessthantheoverallgalaxypopulation(blackpoints),andextendingfromV≈17.2toV≈21mag.Wethereforedefinealineintheµo–Vplane:µo=aV+b′andV>17.2andV≤21.0

(5)

topassbetweenthesepopulations,andweuseitasadividertoseparatestarsandgalaxies(seediagonaldashedlineinFig.2).AllobjectswithV≤21magwhichareclassifiedasstarsareshowninredinFig.2.

ForobjectsfainterthanV≈21magstar-galaxysepa-rationbecomesproblematic.Atthesemagnitudesthestellarlocusmergeswiththatoftheoverallgalaxypopulationandthetwocannolongerbedistinguished.Inordertoper-formstar-galaxyclassificationfaintwardofV=21magweuseasimilarmethodtothatoutlinedinLiskeetal.(2003).Sincethe(logarithmic)slopeofthestarcountsshouldre-mainroughlyconstanttoV≈24mag(K¨ummel&Wagner2001),wecanusethestarcountsderivedfromthebrightobjectsinthecatalogandextrapolatethemtoderivetheexpectednumberofstarcountsatfaintermagnitudes.We

4Michael.B.Pracyetal.

Figure2.Distributionofdetectedobjectsinthecentralsurfacebrightness–magnitudeplane.Bluepointsareobjectsclassifiedascosmicrays,redpointsareobjectsclassifiedasstarsdirectlyfromtheirpositionsinthisplane,greenpointsareobjectsclassifiedasstarsbyextrapolationfromthebrighterstarcountsandblackpointsaretheobjectsclassifiedasgalaxies.Toppanel:A2218.Middlepanel:A2443.Lowerpanel:A119.Onlyoneinsixobjects,randomlyselected,aredisplayed.

thenclassifiedobjectsasstarsbasedontheirpositionintheµo–Vplane(objectswiththelowestvalueofµo−mV)untilwehadobtainedthepredictednumberofstars.Althoughthismethodwillresultinsomeindividualobjectshavingincorrectclassifications,theoverallstatisticalproprietiesofthecatalogswillbecorrect.Theobjectsthathavebeenclas-sifiedasstarsinthiswayareshowningreeninFig.2.

2.6.3

Completeness

Atthispointeveryobjectinthecatalogshasbeenclassi-fiedaseitherastar,galaxyorcosmicray.Wearelimitedtogalaxieswithacentralsurfacebrightness(overanareaof8pixels)ofµo≤26magarcsec−2andfromFig.2weseethatobjectswithcentralsurfacebrightnessesclosetothislimitonlyoccurinsignificantnumbersatV>23.5mag,indicat-ingthebeginningofdetectionincompleteness(Garillietal.1999).Wetherefore,defineanapparentmagnitudelimitofV=23.5mag.

3RADIALPROFILES

Thewidefield-of-viewprovidedbytheWFCmosaicsenableustosurveytheradialdistributionofgalaxiesbeyondthedomainofthecluster,welloutintothesurroundingfield.Toexplorethis,weplotforeachclusterthegalaxy-surfacedensityagainstcluster-centricradius.Thisisachievedbyderivingthegalaxycountsinconcentricannulicentredonthebrightestclustergalaxy.Thesurfacedensitywascalcu-latedtakingintoaccounttheareaofeachannuluswhichen-compassestheunmaskedfield-of-viewoftheavailableCCDarea(i.e.,correctedforanyexclusionregionswhichinter-secttheannulus).Wealsocorrectedforthe‘diminishingareaeffect’(Driveretal.1998)wherebytheareaoverwhichfaintobjectscanbedetectedisreducedbythepresenceofbrighterobjects.TocalculatethiseffectweusedtheSEx-tractorparameterISOAREA–whichreturnsthetotalareaassignedtoanobjectbySExtractor–tocalculatetheamountofareaoccupiedbybrighterobjects.

TheSExtractorbestmagnitudeswerecorrectedforgalacticextinctionusingthemapsofSchlegeletal.(1998).TheobservedradialgalaxysurfacedensityprofilesforA2218,A2443andA119areshowninFig.3,Fig.4andFig.5,respectively,asopensquares.TheerrorbarsonthepointsarethoseexpectedfrompurelyPoissonstatistics.3.1

Clusterprofiles

TheradialprofilesinFigs.3–5representthesuperpositionoftheclustersurfacedensityprofilesandaconstant‘field’galaxysurfacedensity.Weelecttodescribetheclustersur-facedensityinfunctionalformbyaKing(1962)profile,plusaconstantsurfacedensityof‘field’galaxies,thus:

σ(r)=σ0

(6)rc

whereσ(r)represents󰀋2+Nf

theradially(r)dependentnumber-countsalongtheline-of-sight.Thefirstterminequation(6)representstheprojecteddistributionofclustergalaxiesandthesecondtermthesuperimposed‘field’population.InFigs.3–5wehavebinnedthegalaxynumbercountsinradialannuli.Wethereforeneedtointegrateourfittingfunction(equation6)overtheannulitoobtaintheaveragesurfacedensity,whichgives

1

r2N2+σ0r2

frmax−r2

clog(1+(r/rc)2)min

󰀌

󰀂󰀊󰀊rmax

󰀊󰀊(7)

rmin

Luminositysegregationinthreeclustersofgalaxies5

Figure3.ThesurfacedensityofgalaxiesinA2218asafunctionofcluster-centricradiusforaseriesofmagnitudeintervals.Thesolidcurvesarethebestfitting‘King+constant’profilegivenbyequation(7).The(apparent)magnitudeintervalsandtheircorrespondingabsolutemagnitudeintervals(fortheclusterredshift)aswellasthebestfittingvaluesofthefitparametersaretabulatedineachpanel.ThedashedlinesshowthevalueoftheNfparameterfromequation(7).

whererminandrmaxaretheinnerandouterradialbound-ariesofthebin,respectively.Thefittedprofilestothemea-suredgalaxysurfacedensityprofilesareshownasthesolidlinesinFig.3–5in1magintervalsofV.Overall,thesurfacedensityofgalaxiesarewelldescribedbyequation(6).InFig.6weshowtheKingprofilecoreradii[givenbytheparameterrcinequation(7)]asafunctionofabsoluteV-bandmagnitude,theerrorsonthepointsarecalculateddirectlyfromthecovariancematrixreturnedfromχ2min-imisation.InthecaseoftheclustersA2443(middlepanel)andA119(lowerpanel)wefindthatthecoreradiusises-sentiallyindependentofmagnitude,withbothclustershav-ingcoreradiiofrc≈0.2–0.5Mpcatallluminosities.Thebestfittingslopesaregivenby−0.001±0.033Mpcmag−1and0.058±0.040Mpcmag−1,respectively–bothconsis-tentwithzeroat∼1σ.InA2218,wefindthatthebright-estgalaxieshaveasmallercoreradiusthentheirfaintercounterparts,withmarginalevidencethatthistrend–in-creasingcoreradiuswithdecreasingluminosity–continuesfortheintermediatepopulation.Thebestfittingslopeisgivenby0.086±0.030Mpcmag−1.However,ifthebright-estpoints(MV<−21mag)areremoved,theslopebecomes0.051±0.054Mpcmag−1whichisconsistentwithzeroatlessthanthe1σlevel.ThistrendisgenerallyconsistentwithPracyetal.(2004)whofoundthatthespatialdistributionofgalaxiesinA2218ismoreextendedforthelowerlumi-nositypopulations.Unfortunatelythedatadonotextendtotheirdwarfandultra-dwarfregimes.

Core radius (Mpc)10.80.60.40.20-230.80.60.40.20-231.210.80.60.40.20-23GiantsDwarfsUltra-dwarfs-22-21-20-19-18-17-16-15-14-13-22-21-20-19-18-17-16-15-14-13-22-21-20-19MV-18-17-16-15-14-13Figure6.Coreradii[rcfromequation(7)]versusabsoluteV-bandmagnitude.Toppanel:A2218.Middlepanel:A2443.Lowerpanel:A119.Thebestfittingslopesaredisplayedassolidlines.The‘Giant’,‘Dwarf’and‘Ultra-dwarf’regimes,asdefinedbyPracyetal.(2004),aredelineatedbythedashedlines.Thesedef-initionshavebeenadjustedduetodifferencesinthefiltersandtheassumedcosmology.

3.2Referencefieldcounts

Inordertostudytheclustergalaxypopulationweneedtoremovethecontributiontothecountsalongtheline-of-

6Michael.B.Pracyetal.

Figure4.SameasFig.3exceptforA2443

Figure5.SameasFig.3exceptforA119

Luminositysegregationinthreeclustersofgalaxies

sightfromforegroundandbackground‘field’galaxies.Todothisweusethestandardtechniqueofstatisticalfieldsubtraction.Howeverratherthanusedataobtainedfromoff-clusterpointingswearenowabletousethecountsderivedfromtheradialfits(i.e.,Nfinequation7).

ThefieldgalaxynumbercountsderivedinthiswayareshowninthetoppanelofFig.7,wherewehaveplottedthecountsfromtheA2218field(filledsquares),theA2443field(filledcircles)andtheA119field(stars),separately.ForcomparisonwealsoplotthegalaxynumbercountsfromtheMillenniumGalaxyCatalog(MGC)ofLiskeetal.(2003),whichwehaveconvertedfromtheB-bandtotheV-bandusingthemeanfieldgalaxycolour(B−V)=0.94(Norbergetal.2002).WenotethatthiscolourisonlystrictlyvalidforV<18mag;however,thenumbercountsagreequitewellovertheentirerangeofluminosities.The‘field’countsderivedforthelowredshiftclusterA119gen-erallyhavelargererrorbarsandmuchlargerscatterthanthosederivedfortheothertwoclusters.Thisisexpectedsincetheradialprofilesforthisclusterextendtoaradiusofonly∼2Mpc.ThescatterinthepointscanbeseenmoreclearlyinthelowerpanelofFig.7whereweshowthegalaxycountsrelativetoaN∝100.45Vrelation.

Inordertogiveasmoothrepresentationofthe‘field’countswefittedaquadraticfunctiontothem.Since‘field’galaxycountscanvarysignificantlybetweenfields,aquadraticfitwasperformedseparatelyforeachsetofref-erence‘field’counts.ThesefitsareshowninthelowerpanelofFig.7asthesolid,dashedanddot-dashedlinesforA2218,A2443andA119,respectively.Forillustrativepurposesasi-multaneousfittoallthreedatasetsisshownasthesolidlineinthetoppanelofFig.7.WealsousedtheMGCcountsatV<18magtoprovideabrightend‘anchor’tothefit–weartificiallyintroducederrorsof10%onthesepointssoasnottoallowtheMGCpointstoinfluencethefitatthecriticalfaintend.Thequadraticfitsyield:

dN

7

dV

ln10

+2Vδab+2V2δac+2V3δbc

where

dN

󰀆2󰀉

222δa+V2δb+V4δc

󰀋

(9)

8Michael.B.Pracyetal.

1.1251.11.075Abell 2218Abell 2443Abell 0119snelf1.051.02510.975141516171819V2021222324Figure8.Thefunctionflensaveragedoverthecentral500kpcforA2218(solidline),A2443(dashedline)andA119(dottedline).

ingeffectwefollowtheprocedureoutlinedinPracyetal.(2004)andreferencestherein.Weuseavaluefortheve-locitydispersionof1370kms−1forA2218(LeBorgneetal.1992)and778kms−1forA119(Struble&Rood1987);sincenovelocitydataisavailableforA2443weassumeavelocitydispersionforthisclusterof1000kms−1.WeusethelocalluminosityfunctionmeasuredfromtheMGC(Driveretal.2005)andconverttotheV-bandusingB−V=0.94(Norbergetal.2002).

InFig.8thefunctionflensisshownforA2218asthesolidline,forA2443asthedashedlineandforA119asthedottedline.Clearly,theeffectislargestforA2218,pri-marilyasaresultofthecluster’shigherredshift.InA2218theeffectismostevidentforgalaxieswithV≈21withafractionalchangeinthe‘background’populationofap-proximately10%.Atthislevelthelensingeffectrepresentsaminorcomponentoftheerrorbudget.Howeveritisworthnotingthatthelensingcorrectiondependscriticallyontheassumptionsconcerningtheevolutionofthegalaxynumbercountsasafunctionofredshift,whichisnotwellknown.GiventhisuncertaintyandthesmallsizeofthecorrectionsinFig.8,wedonotcorrectforlensingatthistime.

4LUMINOSITYFUNCTIONS

Wenowuseourdataalongwithourmeasured‘field’countstostudytheluminositydistributionofgalaxiesineachcluster.Thefaint–endlimitsforA2218,A2443andA119are,respectively,MV=−16.7,MV=−15.4andMV=−13.3mag.Theseincludecorrectionforgalacticdust(Schlegeletal.1998)andK-correction(Poggianti1997).4.1

Centralluminositydistribution

Wefirstconstruct,foreachcluster,theluminositydistri-butionofgalaxieswithinacluster-centricradiusof1Mpc.Weuseequation(8)–scaledtotheappropriatearea–tocorrect‘statistically’forcontaminationbythesuperimposed‘field’galaxypopulation.TheseareshownintheleftpanelsofFig.9forA2218(top),A2443(middle)andA119(bot-tom)–andarealsotabulatedinTable2.Wefiteachof

Figure9.Leftpanels:Theluminositydistributionsfortheclus-tersA2218(top),A2443(middle)andA119(bottom)withinacluster-centricradiusof1Mpc.ThedataareshownbythestarsandthesolidlineisaSchechter(1976)functionfittothedata.Therightpanelsshowthe1,2and3σerrorellipsesfortheSchechterfunctionparametersM∗andα.Alsoshown(opencir-cleintoppanel)isthebest–fittingSchechterfunctionparametersforthe‘bright-end’oftheluminositydistributionofA2218fromPracyetal.(2004).

theluminositydistributionswithaSchechter(1976)func-tion;whichhasbeenconvolvedwiththemagnitudebinwidth.TheluminositydistributionsinallthreeclustersarewelldescribedbyaSchechterfunctionwithshapeparam-etersM.14+0V∗

=−21.54+0.08M21.32+0−0.11andα=−1.14+0.10−0.07forA2218,

V∗

=−.39M−0.36andα=−1.11−0.09forA2443and

.30+0.V∗

=−21.51+007−0.20andα=−1.22−0.06forA119.SincetheparametersM∗andαaredependentweplot,intherighthandpanelsofFig.9,the1,2and3σerrorcontoursfortheSchechterfunctionfit.

TheluminositydistributionofgalaxiesinA2218hasbeenstudiedbyPracyetal.(2004)usingadeepHSTmo-saicofthecluster.Their‘bright-end’luminositydistribu-tioniscomparableinbandpass,arealcoverageandluminos-ityrangetotheonederivedabove–withaprojectedarea

coveredof∼2.6h−0.227Mpc(comparedwith∼3.1h−0.22

7Mpcinthisstudy)andaluminosityrangecorrespondingtoMV<−17(comparedwithMV<−16.7here).HerewehaveconvertedtotheV-bandusingtherelationV=F606W+0.12(Norbergetal.2002;Driveretal.2003)andcorrectedfordifferencesinassumedcosmology,dustex-tinction,K-correction,andtheomissionofthecDgalaxy

Luminositysegregationinthreeclustersofgalaxies

9

Table2.luminositydistributions

A2218−23.68−14.31<

MV

≤−13.31

254.88

78.41

whereζ(M󰀅nc

R,(10)

i=1

i)isthecombinedgalaxynumber‘counts’inthemagnitudeintervalcentredonM,ncisthenumberofclustersinthecompositeluminositydistribution(nc=3)andNi(M)isthegalaxynumbercountsinthemagnitudebincentredonMfortheithcluster.Riisthe‘richnesscount’oftheithcluster,whichistakentobethetotalnumberofbackground–subtractedgalaxiesinthemagnituderange−211.5h−0.1

7Mpc(Valottoetal.2001).

Thecompositeluminositydistributionandbest–fittingSchechterfunction(solidline)isshowninFig.10.Theshapeofthebest–fittingSchechterfunctionisparameterisedby

M21.82+0.2122+0V∗

=−.05errorcontours−of0.18andα=−1.theparametersM−0.04.The1,2and3σ

V∗

andαforourcom-positeluminositydistributionareshownintherightpanel

ofFig.10,alongwiththepositionsintheMV∗

–αplaneofasubsampleofthecompositeluminosityfunctionpa-rametersfromtheliterature(convertedtotheV-band).Theopencircleandstarrepresentthefieldgalaxylumi-nosityfunctionsderivedfromtheMGC(Driveretal.2005)andTwoDegreeFieldGalaxyRedshiftSurvey(2dFGRS;Collessetal.2001),bothofwhichexhibitfaint–endslopes(α)thataresimilartothatofourcompositeluminosityfunctionbuthaveabrighterandfaintercharacteristicmag-nitude(M∗),respectively.Theopensquarerepresentsthebest–fittingSchechterfunctionparametersforacompositeofclusters(DeProprisetal.2003)drawnfromthe2dFGRSwithameanredshiftofz=0.12.Ourcompositeluminosityfunctionhasamarginallybrightercharacteristicmagnitudetothatofthe2dFGRSclustercompositeandaslightlyflat-terα.TheopentriangleshowstheformalSchechterfunctionparametersfromGotoetal.(2002)foracompositeofclus-tersintheredshiftrange0.25GEOMETRICDEPROJECTION

Thewidefield-of-viewoftheWFCmosaicsprovidescover-ageoftheentireclusterarea,inthesensethatthenumber

10Michael.B.Pracyetal.

Table3.RecentmeasurementsoftheLFparametersfromwide–fieldV-bandCCDphotometry

Coma†Coma

Abell2151Abell119Abell2443Abell2218ABCG209ABCG209AC1180.0230.0230.0370.0440.1080.1810.2090.2090.310∼∼∼∼∼∼∼∼∼0.91.18.33.13.13.13.46.95.5−21.51MV<−15.0MV<−13.3MV<−15.4MV<−16.7MV<−17.6MV<−17.6MV<−18.2

NANA

.44

−21.56+0−0.41

.30

−21.51+0−0.20

.39

−21.32+0−0.36

.14

−21.54+0−0.11−22.18±0.3−22.03±0.3−20.93±0.4

.06

−1.43+0−0.03−1.59±0.02

.09

−1.29+0−0.08

.07

−1.22+0−0.06

.10

−1.11+0−0.09

.08

−1.14+0−0.07−1.27±0.10−1.25±0.08−1.02±0.18

Andreon&Cuillandre(2002)Loboetal.(1997)S´anchez-Janssenetal.(2005)ThisworkThisworkThiswork

Mercurioetal.(2003)Mercurioetal.(2003)Busarelloetal.(2002)

Table4.Schechterfunctionparametervaluesforthedeprojected(3-dimensional)luminosityfunctionsinthreeannuli:0.0MpcA2218

A2443

A119

0–0.30.3–0.60.6–1.50–0.30.3–0.60.6–1.50–0.30.3–0.60.6–1.5

.57

−22.12+0−0.57

.60

−22.31+0−0.77

.37

−21.86+0−0.35

.58

−20.72+0−0.63

.72

−21.72+0−0.63

.02

−20.03+1−0.88

.54

−22.24+1−1.78

.71

−21.53+0−0.70

.51

−21.66+0−0.54.19

−0.94+0−0.16

.16

−1.30+0−0.15

.11

−1.36+0−0.10

.22

−1.00+0−0.19

.14

−1.19+0−0.12

.45

−1.01+0−0.18

.16

−1.25+0−0.11

.16

−1.16+0−0.12

.12

−1.23+0−0.10

3

πα

3

󰀇󰀇

1−

β2

α2

󰀈3/2󰀈

(12)

(Beijersbergenetal.2002).

Wesetradialbinpartitionsatcluster-centricradiiof0.3,0.6and1.5Mpc–splittingtheclusterfieldintofourregions(n=4)–andperformgeometricdeprojec-tionofthedatain1magnitudeintervals.Wefirstsub-tractfromthenumbercountsineachannulithecontribu-tionfromthesuperimposedfieldgalaxypopulationusingequation(8)–normalisedtotheareaof‘detectability’foreachannulus.Weusetheoutermostannuli(R>1.5Mpc)tobeginthedeprojection,thatis,seti=3inequa-tion(11)andtheniterativelycalculatethedeprojected(3-Dimensional)luminosityfunctionineachoftheinnerthreeannuli:0.0MpcThedeprojected3DluminosityfunctionsareshowninFig.11forA2218(top),A2443(middle)andA119(bottom).Theopencircles,opensquaresandopentrianglesarethegalaxydensitiesintheinner,middleandouterannuli,re-

Luminositysegregationinthreeclustersofgalaxies11

Figure11.Leftpanels:thedeprojectedluminositydistributionsofgalaxiesincluster-centricannuliof0–0.3Mpc(opencircles),0.3–0.6Mpc(opensquares)and0.6–1.5Mpc(opentriangles)andtheirbestfittingSchechterfunctions(solid,dashedanddottedlines,respectively).Rightpanels:1,2and3σerrorcontoursfor

theSchechterfunctionparametersM∗andα.A2218:toppanel,A2443:middlepanelandA119:bottomV

panel.

tion.Theluminosityfunctionremainsflatafterdeprojectionand(exceptforthecoreregionofA2218)wefindnostatisti-callysignificantevidenceforanychangewithcluster-centricradius–consistentwithourradialprofileanalysis.

Thesegregationofgalaxiesofdifferentluminositiesisakeypredictionofhierarchicalmodelsofgalaxyfor-mationandevolution.ThenumericalCDMmodelsofKauffmannetal.(1997),forexample,predictthatlowlumi-nositygalaxiesshouldbelessclusteredthanthebright‘gi-ant’galaxies(seePhillippsetal.1998).Evolutionarymecha-nismsoperatinginclusterswhichshouldgiverisetoluminos-itysegregationhavealsobeensuggested.Mooreetal.(1998)havebeenabletoexplainthedwarfpopulation–densityre-lation(inwhichtheratioofdwarfgalaxiestogiantgalaxiesincreaseswithdecreasinglocalgalaxydensity)astheresultofgalaxy‘harassment’–whichoperatesmoreeffectivelyinregionsofhighgalaxydensity.Interactionwiththeclustertidalfieldwilldestroythelowestsurfacebrightness(leastbound)objectsinthecentralregionofacluster,resultinginadeficiencyoffaintgalaxiesintheclustercore.Iflumi-nositysegregationinclustersisnotpresentthentheimpactoftheseeffectsonthelow-luminosityclustergalaxieshasbeenexaggerated.

Thekeyissueinsearchingforluminositysegregation

inclustersisthatofthetechniqueofbackgroundsubtrac-tionemployed.Thefractionaldifferencebetweenthetotal(cluster+‘field’)galaxycountsandthe‘field’galaxycountsdecreaseswithdecreasingluminosity.Therefore,anysystem-aticerrorintheestimateofthefieldgalaxycountscanmimicbothafaint–endupturnintheluminosityfunctionandlu-minositysegregation–inthesensethatunderestimatingthefieldcountswillresultinalargerfractionoffaintgalaxiesatlowlocalgalaxydensities.Usingspectroscopytoconfirmclustermembershipisessentiallyuselessforallbutthenear-estclusters,sincethegalaxiesatthecriticalfaintendoftheluminosityfunctionaretoofaintforspectroscopicconfirma-tion.Hence,mostoftenastatisticalsubtractionofthefieldisperformedusinggalaxycountsmeasuredfromaregionoff-setfromtheclusterline-of-sight.Valottoetal.(2001)pointoutonepossiblesourceofbiasinstatisticalfieldsubtrac-tionduetothealignmentsbetweenfilamentsandclusterswhichcanresultinanunderestimateofthe‘field’galaxypopulation.Herewehaveusedananalyticrepresentation(equation6)oftheradialdistributionofgalaxiestowardtheclustersight-linetosimultaneouslyobtaintheclusterprofileandthesuperimposed‘field’galaxysurfacedensity.Note,fittingequation(6)totheradialprofilesinFig.3,Fig.4andFig.5doesnotrequirepriorsubtractionofthefieldgalaxypopulationandwe,therefore,suggestthatthisisasuperiortestforluminositysegregation.VeryrecentlyAndreonetal.(2005)havesuggestedanalternativemethodtoalleviateandquantifytheproblemsofbackgroundsub-tractioninderivingclusterluminosityfunctions–adetailedcomparisonofthesemethodsandthetraditionalmethodshouldbepursuedinafuturepaper.

ACKNOWLEDGEMENTS

BasedonobservationsmadewiththeIsaacNewtonTele-scopeoperatedontheislandofLaPalmabytheIsaacNew-tonGroupintheSpanishObservatoriodelRoquedelosMuchachosoftheInstitutodeAstrofisicadeCanarias.WethanktheCambridgeAstronomicalSurveyUnitforreduc-ingtheINTdata.WealsothanktheanonymousrefereeforaveryhelpfulreportwhichhasgreatlyimprovedthispaperandChrisBlakeforhishelpandadvicewiththiswork.M.B.P.wassupportedbyanAustralianPostgraduateAward.S.P.DandW.J.C.acknowledgethefinancialsupportoftheAustralianResearchCouncilthroughoutthecourseofthiswork.ThisresearchhasmadeuseoftheNASA/IPACExtragalacticDatabase(NED)whichisoperatedbytheJetPropulsionLaboratory,CaliforniaInstituteofTechnology,undercontractwiththeNationalAeronauticsandSpaceAdministration.

REFERENCES

AndreonS.,2002,A&A,382,821

AndreonS.,CuillandreJ.-C.,2002,ApJ,569,144

AndreonS.,PunziG.,GradoA.,2005,MNRAS,360,727BeijersbergenM.,SchaapW.E.,vanderHulstJ.M.,2002,A&A,390,817

BernsteinG.M.,NicholR.C.,TysonJ.A.,UlmerM.P.,WittmanD.,1995,AJ,110,1507

12Michael.B.Pracyetal.

BertinE.,ArnoutsS.,1996,A&AS,117,393

BivianoA.,KatgertP.,ThomasT.,AdamiC.,2002,A&A,387,8

BusarelloG.,MerluzziP.,LaBarberaF.,MassarottiM.,CapaccioliM.,2002,A&A,389,787

CapelatoH.V.,GerbalD.,MathezG.,MazureA.,RolandJ.,Salvador-SoleE.,1981,A&A,96,235

CollessM.,DaltonG.,MaddoxS.,SutherlandW.,NorbergP.,ColeS.,Bland-HawthornJ.,BridgesT.,CannonR.,CollinsC.,and19coauthors,2001,MNRAS,328,1039DeProprisR.,CollessM.,DriverS.P.,CouchW.,PeacockJ.A.,and19coauthours2003,MNRAS,342,725DresslerA.,1980,ApJ,236,351

DriverS.P.,CouchW.J.,PhillippsS.,1998,MNRAS,301,369

DriverS.P.,CouchW.J.,PhillippsS.,M.S.R.,1998,MNRAS,301,357

DriverS.P.,LiskeJ.,CrossN.J.C.,DeProprisR.,AllenP.D.,2005,MNRAS,inpress

DriverS.P.,OdewahnS.C.,EchevarriaL.,CohenS.H.,WindhorstR.A.,PhillippsS.,CouchW.J.,2003,AJ,126,2662

FabianA.C.,HuE.M.,CowieL.L.,GrindlayJ.,1981,ApJ,248,47

FergusonH.C.,SandageA.,1989,ApJ,346,L53

GarilliB.,MaccagniD.,AndreonS.,1999,A&A,342,408GirardiM.,RigoniE.,MardirossianF.,MezzettiM.,2003,A&A,406,403

GotoT.,OkamuraS.,McKayT.A.,BahcallN.A.,AnnisJ.,BernardM.,BrinkmannJ.,G´omezP.L.,HansenS.,KimR.S.J.,SekiguchiM.,ShethR.K.,2002,PASJ,54,515

IrwinM.,LewisJ.,2001,NewAstronomyReview,45,105K¨ummelM.W.,WagnerS.J.,2001,A&A,370,384

KashikawaN.,SekiguchiM.,DoiM.,KomiyamaY.,Oka-muraS.,ShimasakuK.,YagiM.,YasudaN.,1998,ApJ,500,750

KauffmannG.,NusserA.,SteinmetzM.,1997,MNRAS,286,795

KingI.,1962,AJ,67,471

KronR.G.,1980,ApJS,43,305LandoltA.U.,1992,AJ,104,340

LeBorgneJ.F.,PelloR.,SanahujaB.,1992,A&AS,95,87

LiskeJ.,LemonD.J.,DriverS.P.,CrossN.J.G.,CouchW.J.,2003,MNRAS,344,307

LoboC.,BivianoA.,DurretF.,GerbalD.,LeFevreO.,MazureA.,SlezakE.,1997,A&A,317,385

MathewsW.G.,ChomiukL.,BrighentiF.,BuoteD.A.,2004,ApJ,616,745

MelnickJ.,SargentW.L.W.,1977,ApJ,215,401

MercurioA.,MassarottiM.,MerluzziP.,GirardiM.,LaBarberaF.,BusarelloG.,2003,A&A,408,57MooreB.,LakeG.,KatzN.,1998,ApJ,495,139

NorbergP.,ColeS.,BaughC.M.,FrenkC.S.,BaldryI.,Bland-HawthornJ.,BridgesT.,CannonR.,CollessM.,CollinsC.,and18coauthors,2002,MNRAS,336,907OemlerA.J.,1974,ApJ,194,1

PhillippsS.,DriverS.P.,CouchW.J.,SmithR.M.,1998,ApJ,498,L119+

PoggiantiB.M.,1997,A&AS,122,399

PracyM.B.,DeProprisR.,DriverS.P.,CouchW.J.,NulsenP.E.J.,2004,MNRAS,352,1135

RoodH.J.,TurnroseB.E.,1968,ApJ,152,1057S´anchez-JanssenR.,Iglesias-P´aramoJ.,Mu˜noz-Tu˜n´onC.,AguerriJ.A.L.,V´ılchezJ.M.,2005,A&A,434,521SchechterP.,1976,ApJ,203,297

SchlegelD.J.,FinkbeinerD.P.,DavisM.,1998,ApJ,500,525

SmithR.M.,DriverS.P.,PhillippsS.,1997,MNRAS,287,415

SteinP.,1997,A&A,317,670

StrubleM.F.,RoodH.J.,1987,ApJS,63,543TrenthamN.,1998,MNRAS,295,360

ValottoC.A.,MooreB.,LambasD.G.,2001,ApJ,546,157

WhitmoreB.C.,GilmoreD.M.,JonesC.,1993,ApJ,407,489

YepesG.,Dominguez-TenreiroR.,delPozo-SanzR.,1991,ApJ,373,336

因篇幅问题不能全部显示,请点此查看更多更全内容

Top