搜索
您的当前位置:首页正文

利用语义分割算法做指针式仪表的读数识别

来源:赴品旅游

如何使用pspnet训练出仪表的指针和表盘
第一步先打标,打标之前先安装labelme,这里我用的labelme版本是3.16.7

pip install labelme==3.16.7

然后在终端桥labelme 打开labelme的界面
如下:

import argparse
import base64
import json
import os
import os.path as osp
import warnings

import numpy as np
import PIL.Image
import yaml
from labelme import utils

'''
我使用的labelme版本是3.16.7,建议使用该版本的labelme,有些版本的labelme会发生错误
此处生成的标签图是8位彩色图,每个像素点的值就是这个像素点所属的种类
'''
if __name__ == '__main__':
    jpgs_path = "datasets/JPEGImages"
    pngs_path = "datasets/SegmentationClass"
    #classes = ["_background_","aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
    classes = ["_background_","pan","zhen"]
    
    count = os.listdir("./datasets/before/") 
    for i in range(0, len(count)):
        path = os.path.join("./datasets/before", count[i])

        if os.path.isfile(path) and path.endswith('json'):
            data = json.load(open(path))
            
            if data['imageData']:
                imageData = data['imageData']
            else:
                imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
                with open(imagePath, 'rb') as f:
                    imageData = f.read()
                    imageData = base64.b64encode(imageData).decode('utf-8')

            img = utils.img_b64_to_arr(imageData)
            label_name_to_value = {'_background_': 0}
            for shape in data['shapes']:
                label_name = shape['label']
                if label_name in label_name_to_value:
                    label_value = label_name_to_value[label_name]
                else:
                    label_value = len(label_name_to_value)
                    label_name_to_value[label_name] = label_value
            
            # label_values must be dense
            label_values, label_names = [], []
            for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
                label_values.append(lv)
                label_names.append(ln)
            assert label_values == list(range(len(label_values)))
            
            lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)
            
                
            PIL.Image.fromarray(img).save(osp.join(jpgs_path, count[i].split(".")[0]+'.jpg'))

            new = np.zeros([np.shape(img)[0],np.shape(img)[1]])
            for name in label_names:
                index_json = label_names.index(name)
                index_all = classes.index(name)
                new = new + index_all*(np.array(lbl) == index_json)

            utils.lblsave(osp.join(pngs_path, count[i].split(".")[0]+'.png'), new)
            print('Saved ' + count[i].split(".")[0] + '.jpg and ' + count[i].split(".")[0] + '.png')

处理成voc的数据格式以后,第二步我们需要对数据进行分类,分为训练集和验证集。
分类的代码如下

import os
import random 
random.seed(0)
 
segfilepath=r'./datasets/VOC2007/SegmentationClass'
saveBasePath=r"./datasets/VOC2007/ImageSets/Segmentation/"
 
#----------------------------------------------------------------------#
#   想要增加测试集修改trainval_percent
#   修改train_percent用于改变验证集的比例
#----------------------------------------------------------------------#
trainval_percent=1
train_percent=0.9

temp_seg = os.listdir(segfilepath)
total_seg = []
for seg in temp_seg:
    if seg.endswith(".png"):
        total_seg.append(seg)

num=len(total_seg)  
list=range(num)  
tv=int(num*trainval_percent)  
tr=int(tv*train_percent)  
trainval= random.sample(list,tv)  
train=random.sample(trainval,tr)  
 
print("train and val size",tv)
print("traub suze",tr)
ftrainval = open(os.path.join(saveBasePath,'trainval.txt'), 'w')  
ftest = open(os.path.join(saveBasePath,'test.txt'), 'w')  
ftrain = open(os.path.join(saveBasePath,'train.txt'), 'w')  
fval = open(os.path.join(saveBasePath,'val.txt'), 'w')  
 
for i  in list:  
    name=total_seg[i][:-4]+'\n'  
    if i in trainval:  
        ftrainval.write(name)  
        if i in train:  
            ftrain.write(name)  
        else:  
            fval.write(name)  
    else:  
        ftest.write(name)  
  
ftrainval.close()  
ftrain.close()  
fval.close()  
ftest .close()

python train.py

训练过程如图所示,收敛就好

因篇幅问题不能全部显示,请点此查看更多更全内容

Top