如何使用pspnet训练出仪表的指针和表盘
第一步先打标,打标之前先安装labelme,这里我用的labelme版本是3.16.7
pip install labelme==3.16.7
然后在终端桥labelme 打开labelme的界面
如下:
import argparse
import base64
import json
import os
import os.path as osp
import warnings
import numpy as np
import PIL.Image
import yaml
from labelme import utils
'''
我使用的labelme版本是3.16.7,建议使用该版本的labelme,有些版本的labelme会发生错误
此处生成的标签图是8位彩色图,每个像素点的值就是这个像素点所属的种类
'''
if __name__ == '__main__':
jpgs_path = "datasets/JPEGImages"
pngs_path = "datasets/SegmentationClass"
#classes = ["_background_","aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
classes = ["_background_","pan","zhen"]
count = os.listdir("./datasets/before/")
for i in range(0, len(count)):
path = os.path.join("./datasets/before", count[i])
if os.path.isfile(path) and path.endswith('json'):
data = json.load(open(path))
if data['imageData']:
imageData = data['imageData']
else:
imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
with open(imagePath, 'rb') as f:
imageData = f.read()
imageData = base64.b64encode(imageData).decode('utf-8')
img = utils.img_b64_to_arr(imageData)
label_name_to_value = {'_background_': 0}
for shape in data['shapes']:
label_name = shape['label']
if label_name in label_name_to_value:
label_value = label_name_to_value[label_name]
else:
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value
# label_values must be dense
label_values, label_names = [], []
for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
label_values.append(lv)
label_names.append(ln)
assert label_values == list(range(len(label_values)))
lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)
PIL.Image.fromarray(img).save(osp.join(jpgs_path, count[i].split(".")[0]+'.jpg'))
new = np.zeros([np.shape(img)[0],np.shape(img)[1]])
for name in label_names:
index_json = label_names.index(name)
index_all = classes.index(name)
new = new + index_all*(np.array(lbl) == index_json)
utils.lblsave(osp.join(pngs_path, count[i].split(".")[0]+'.png'), new)
print('Saved ' + count[i].split(".")[0] + '.jpg and ' + count[i].split(".")[0] + '.png')
处理成voc的数据格式以后,第二步我们需要对数据进行分类,分为训练集和验证集。
分类的代码如下
import os
import random
random.seed(0)
segfilepath=r'./datasets/VOC2007/SegmentationClass'
saveBasePath=r"./datasets/VOC2007/ImageSets/Segmentation/"
#----------------------------------------------------------------------#
# 想要增加测试集修改trainval_percent
# 修改train_percent用于改变验证集的比例
#----------------------------------------------------------------------#
trainval_percent=1
train_percent=0.9
temp_seg = os.listdir(segfilepath)
total_seg = []
for seg in temp_seg:
if seg.endswith(".png"):
total_seg.append(seg)
num=len(total_seg)
list=range(num)
tv=int(num*trainval_percent)
tr=int(tv*train_percent)
trainval= random.sample(list,tv)
train=random.sample(trainval,tr)
print("train and val size",tv)
print("traub suze",tr)
ftrainval = open(os.path.join(saveBasePath,'trainval.txt'), 'w')
ftest = open(os.path.join(saveBasePath,'test.txt'), 'w')
ftrain = open(os.path.join(saveBasePath,'train.txt'), 'w')
fval = open(os.path.join(saveBasePath,'val.txt'), 'w')
for i in list:
name=total_seg[i][:-4]+'\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest .close()
python train.py
训练过程如图所示,收敛就好
因篇幅问题不能全部显示,请点此查看更多更全内容